Jonas Olsson

Learn More
The authors thank Schertzer et al. (2002) for their comment on their work (Sivakumar et al., 2001) on the investigation of the possible presence of low-dimensional chaotic behaviour (the term "chaos" was used therein to denote the low-dimensional chaos) in the rainfall-runoff process in the Gôta River basin in Sweden. The authors respond to this discussion(More)
The present paper develops linear regression models based on singular value decomposition (SVD) with the aim of downscaling atmospheric variables statistically to estimate average rainfall in the Chikugo River Basin, Kyushu Island, southern Japan, on a 12-hour basis. Models were designed to take only significantly correlated areas into account in the(More)
The dynamic catchment model HBV-N has been further developed by adding routines for phosphorus transport and is now called the HBV-NP model. The model was shown to satisfactorily simulate nutrient dynamics in the Rönneå catchment (1,900 km2). Its sensitivity to input data was tested, and results demonstrated the increased sensitivity to the selection of(More)
Hydrological climate change impact assessment is generally performed by following a sequence of steps from global and regional climate modelling, through data tailoring (bias-adjustment and downscaling) and hydrological modelling, to analysis and impact assessment. This “climate-hydrology-assessment chain” has been developed with a primary focus on(More)
Rainfall data of high temporal resolution are required in a multitude of hydrological applications. In the present paper, a temporal rainfall disaggregation model is applied to convert daily time series into an hourly resolution. The model is based on the principles of random multiplicative cascade processes. Its parameters are dependent on (1) the volume(More)
A framework for downscaling precipitation from RCM projections to the high resolutions in time and space required in the urban hydrological climate change impact assessment is outlined and demonstrated. The basic approach is that of Delta Change, developed for both continuous and event-based applications. In both cases, Delta Change Factors (DCFs) are(More)