Jonas Obleser

Learn More
Speech perception is supported by both acoustic signal decomposition and semantic context. This study, using event-related functional magnetic resonance imaging, investigated the neural basis of this interaction with two speech manipulations, one acoustic (spectral degradation) and the other cognitive (semantic predictability). High compared with low(More)
Iconic gestures are spontaneous hand movements that illustrate certain contents of speech and, as such, are an important part of face-to-face communication. This experiment targets the brain bases of how iconic gestures and speech are integrated during comprehension. Areas of integration were identified on the basis of two classic properties of multimodal(More)
The human ability to continuously track dynamic environmental stimuli, in particular speech, is proposed to profit from "entrainment" of endogenous neural oscillations, which involves phase reorganization such that "optimal" phase comes into line with temporally expected critical events, resulting in improved processing. The current experiment goes beyond(More)
In speech comprehension, the processing of auditory information and linguistic context are mutually dependent. This functional magnetic resonance imaging study examines how semantic expectancy ("cloze probability") in variably intelligible sentences ("noise vocoding") modulates the brain bases of comprehension. First, intelligibility-modulated activation(More)
Speech comprehension has been shown to be a strikingly bilateral process, but the differential contributions of the subfields of left and right auditory cortices have remained elusive. The hypothesis that left auditory areas engage predominantly in decoding fast temporal perturbations of a signal whereas the right areas are relatively more driven by changes(More)
Like the visual and the sensorimotor systems, the auditory system exhibits pronounced alpha-like resting oscillatory activity. Due to the relatively small spatial extent of auditory cortical areas, this rhythmic activity is less obvious and frequently masked by non-auditory alpha-generators when recording non-invasively using magnetoencephalography (MEG) or(More)
We investigated the functional neuroanatomy of vowel processing. We compared attentive auditory perception of natural German vowels to perception of nonspeech band-passed noise stimuli using functional magnetic resonance imaging (fMRI). More specifically, the mapping in auditory cortex of first and second formants was considered, which spectrally(More)
Speech processing in auditory cortex and beyond is a remarkable yet poorly understood faculty of the listening brain. Here we show that stop consonants, as the most transient constituents of speech, are sufficient to involve speech perception circuits in the human superior temporal cortex. Left anterolateral superior temporal cortex showed a stronger(More)
This study further elucidates determinants of vowel perception in the human auditory cortex. The vowel inventory of a given language can be classified on the basis of phonological features which are closely linked to acoustic properties. A cortical representation of speech sounds based on these phonological features might explain the surprisingly inverse(More)
Modulations of human alpha oscillations (8-13 Hz) accompany many cognitive processes, but their functional role in auditory perception has proven elusive: Do oscillatory dynamics of alpha reflect acoustic details of the speech signal and are they indicative of comprehension success? Acoustically presented words were degraded in acoustic envelope and(More)