Jonas Neubert

Learn More
Modular robotic systems typically assemble using deterministic processes where modules are directly placed into their target position. By contrast, stochastic modular robots take advantage of ambient environmental energy for the transportation and delivery of robot components to target locations, thus offering potential scalability. The inability to(More)
Stochastic self-reconfiguring robots are modular robots that possess the ability to autonomously change the arrangement of their modules and do so through the use of non-deterministic processes. We present a concept for a robotic system in which the stochastic behavior of turbulent flow in a chamber is used during assembly and disassembly operations. The(More)
Cichlid fish larvae were reared from hatching to active free swimming under different gravity conditions: natural environment, increased acceleration in a centrifuge, simulated weightlessness in a clinostat and near weightlessness during space flight. Cytochrome oxidase activity was analyzed semiquantitatively on the ultrastructural level as a marker of(More)
The development of embryonic and larval stages of the South African Toad Xenopus laevis D, was investigated in hyper-g up to 5 g (centrifuge), in simulated 0 g (fast-rotating clinostat), in alternating low g, hyper-g (parabolic flights) and in microgravity (Spacelab missions D1, D-2). The selected developmental stages are assumed to be very sensitive to(More)
The effect of long-term (10 days) altered gravitational conditions upon succinate dehydrogenase (SDH) reactivity in total brains as well as in individual brain nuclei of developing cichlid fish larvae had been investigated by means of semiquantitative histochemical methods (densitometric grey value analysis). Increasing accelerations from near(More)
The effects of altered gravitational conditions (AGC) on the development of the static vestibulo-ocular reflex (VOR) and readaptation to 1g were investigated in the amphibian Xenopus laevis. Tadpoles were exposed to microgravity during the German Space Mission D-2 for 10 days, using the STATEX closed survival system, or to 3g for 9 days during earth-bound(More)
We describe a robotic architecture that combines the benefits of existing enclosed robots with passive dynamics. This combination results in a mobile robot with no moving parts exposed to the environment, making it ideal for tasks where wheeled or legged robots fail. Instead of suppressing resonance, the new robot morphology relies on the dynamics of(More)
Aboard the German-Spacelab-Mission D-2 the project "Gravity Perception and Neuronal Plasticity (STATEX II)" was performed. STATEX is for STATolith EXperiment. Objects were growing tadpoles of the South African Toad (Xenopus laevis D.) and a juvenile cichlid fish (Oreochromis mossambicus). The results give a broader base for the understanding of how(More)
The effect of long-term (10 days) altered gravitational conditions upon succinate dehydrogenase (SDH) reactivity in total brain as well as in individual brain nuclei of developing cichlid fish larvae has been investigated by means of semiquantitative histochemical methods (densitometric grey value analysis). Increasing acceleration from near weightlessness(More)