Learn More
Import of newly synthesized PTS1 proteins into the peroxisome requires the PTS1 receptor (Pex5p), a predominantly cytoplasmic protein that cycles between the cytoplasm and peroxisome. We have identified Pex13p, a novel integral peroxisomal membrane from both yeast and humans that binds the PTS1 receptor via a cytoplasmically oriented SH3 domain. Although(More)
Zellweger syndrome is the archetypical peroxisome biogenesis disorder and is characterized by defective import of proteins into the peroxisome, leading to peroxisomal metabolic dysfunction and widespread tissue pathology. In humans, mutations in the PEX13 gene, which encodes a peroxisomal membrane protein necessary for peroxisomal protein import, can lead(More)
In contrast to peroxisomes in normal cells, remnant peroxisomes in cultured skin fibroblasts from a subset of the clinically severe peroxisomal disorders that includes the biogenesis disorder Zellweger syndrome and the single-enzyme defect D-bifunctional protein (D-BP) deficiency, are enlarged and significantly less abundant. We tested whether these(More)
The gene mutated in the human genetic disorder ataxia-telangiectasia codes for a protein, ATM, the known functions of which include response to DNA damage, cell cycle control, and meiotic recombination. Consistent with these functions, ATM is predominantly present in the nucleus of proliferating cells; however, a significant proportion of the protein has(More)
Import of newly synthesized PTS1 proteins into the peroxisome requires the PTS1 receptor (Pex5p), a predominantly cytoplasmic protein that cycles between the cytoplasm and peroxisome. We have identified Pex13p, a novel integral peroxisomal membrane from both yeast and humans that binds the PTS1 receptor via a cytoplasmically oriented SH3 domain. Although(More)
  • 1