Learn More
We aimed to elucidate the role of electronic and structural parameters of nitroaromatic compounds in their two-electron reduction by NAD(P)H:quinone oxidoreductase (NQO1, DT-diaphorase, EC The multiparameter regression analysis shows that the reactivity of nitroaromatic compounds (n=38) increases with an increase in their single-electron(More)
Enterobacter cloacae NAD(P)H:nitroreductase (NR; EC catalyzes the reduction of a series of nitroaromatic compounds with steady-state bimolecular rate constants (kcat/Km) ranging from 10(4) to 10(7) M(-1) s(-1). In agreement with a previously proposed scheme of two-step four-electron reduction of nitroaromatics by NR (Koder, R. L., and Miller,(More)
With an aim to understand the toxicity mechanisms of the explosive 4,6-dinitro- benzofuroxan (DNBF), we studied its single-electron reduction by NADPH:cytochrome P450 reductase and ferredoxin:NADP(+) reductase, and two- electron reduction by DT-diaphorase and Enterobacter cloacae nitroreductase. The enzymatic reactivities of DNBF and another explosive(More)
We examined the kinetics of single-electron reduction of a large number of structurally diverse quinones and nitroaromatic compounds, including a number of antitumour and antiparasitic drugs, and nitroaromatic explosives by recombinant rat neuronal nitric oxide synthase (nNOS, EC, aiming to characterize the role of nNOS in the oxidative(More)
Enterobacter cloacae NAD(P)H:nitroreductase catalyzes the reduction of a series of nitroaromatic compounds with steady-state bimolecular rate constants (kcat/Km) ranging from 10(4) M(-1) s(-1) to 10(7) M(-1) s(-1), and oxidizing 2 moles NADH per mole mononitrocompound. Oxidation of excess NADH by polynitrobenzenes including explosives 2,4,6-trinitrotoluene(More)
Enterobacter cloacae NAD(P)H:nitroreductase (NR; EC catalyzes two-electron reduction of a series of quinoidal compounds according to a "ping-pong" scheme, with marked substrate inhibition by quinones. The steady-state catalytic constants (k(cat)) range from 0.1 to 1600s(-1), and bimolecular rate constants (k(cat)/K(m)) range from 10(3) to(More)
We aimed to characterize the role of NAD(P)H:quinone oxidoreductase (NQO1) in apoptosis induction by antitumour quinones RH1 (2,5-diaziridinyl-3-hydroxymethyl-6-methyl-1,4-benzoquinone) and MeDZQ (2,5-dimethyl-3,6-diaziridinyl-1,4-benzoquinone). Digitonin-permeabilized FLK cells catalyzed NADPH-dependent single- and two-electron reduction of RH1 and MeDZQ.(More)
BACKGROUND The search for novel chemical entities targeting essential and parasite-specific pathways is considered a priority for neglected diseases such as trypanosomiasis and leishmaniasis. The thiol-dependent redox metabolism of trypanosomatids relies on bis-glutathionylspermidine [trypanothione, T(SH)2], a low molecular mass cosubstrate absent in the(More)
UNLABELLED The enzymatic reactivity of a series of benzo[1,2-c]1,2,5-oxadiazole N-oxides (benzofuroxans; BFXs) towards mammalian single-electron transferring NADPH:cytochrome P-450 reductase (P-450R) and two-electron (hydride) transferring NAD(P)H quinone oxidoreductase (NQO1) was examined in this work. Since the =N+ (→O)O- moiety of furoxan fragments of(More)
In order to characterize the possible mechanism(s) of cytotoxicity of a neuroleptic agent 6,7-dinitrodihydroquinoxaline-2,3-dione (DNQX) we examined the redox properties of DNQX, and its mononitro- (NQX) and denitro- (QX) derivatives. The irreversible electrochemical reduction of the nitro groups of DNQX was characterized by the reduction peak potentials(More)