Jonas Östh

  • Citations Per Year
Learn More
Mathematical human body models (HBMs) are important research tools that are used to study the human response in car crash situations. Development of automotive safety systems requires the implementation of active muscle response in HBM, as novel safety systems also interact with vehicle occupants in the pre-crash phase. In this study, active muscle response(More)
OBJECTIVE The aim of this study is to model occupant kinematics in an autonomous braking event by using a finite element (FE) human body model (HBM) with active muscles as a step toward HBMs that can be used for injury prediction in integrated precrash and crash simulations. METHODS Trunk and neck musculature was added to an existing FE HBM. Active muscle(More)
Over 30 000 fatalities related to the road transport system are reported anually in Europe. Of these fatalities, the largest share is car occupants, even though significant improvements in vehicle safety have been achieved by the implementation of in-crash restraints and pre-crash driver support systems. Integration of pre-crash and in-crash safety systems(More)
Several mathematical cervical models of the 50th percentile male have been developed and used for impact biomechanics research. However, for the 50th percentile female no similar modelling efforts have been made, despite females being subject to a higher risk of soft tissue neck injuries. This is a limitation for the development of automotive protective(More)
OBJECTIVE The aim of this study was to investigate the whole spine alignment in automotive seated postures for both genders and the effects of the spinal alignment patterns on cervical vertebral motion in rear impact using a human finite element (FE) model. METHODS Image data for 8 female and 7 male subjects in a seated posture acquired by an upright open(More)
The development of automotive safety systems is moving towards an integration of systems that are active before and during an impact. Consequently, there is a need to make a combined analysis of both the pre-crash and the in-crash phases, which leads to new requirements for Human Body Models (HBMs) that today are used for crash simulations. In the pre-crash(More)
Human body models (HBMs) for vehicle occupant simulations have recently been extended with active muscles and postural control strategies. Feedback control has been used to model occupant responses to autonomous braking interventions. However, driver postural responses during driver initiated braking differ greatly from autonomous braking. In the present(More)
Mathematical cervical spine models allow for studying of impact loading that can cause whiplash associated disorders (WAD). However, existing models only cover the male anthropometry, despite the female population being at a higher risk of sustaining WAD in automotive rear-end impacts. The aim of this study is to develop and validate a ligamentous cervical(More)
  • 1