Learn More
We describe a rapid and efficient in vitro system for the rejoining of double stranded breaks in DNA based on extracts of human 293 cells. Using this system as an assay, we have separated the nuclear extract into several components involved in break rejoining. The unfractionated system can convert approx. 100% of the input DNA, linearized with a restriction(More)
We have developed a high efficiency system in which mammalian extracts join DNA double-strand breaks with non-complementary termini. This system has been used to obtain a large number of junction sequences from a range of different break-end combinations, allowing the elucidation of the joining mechanisms. Using an extract of calf thymus it was found that(More)
Non-technical loss (NTL) represents a major challenge when providing reliable electrical service in developing countries, where it often accounts for 11-15% of total generation capacity [1]. NTL is caused by a variety of factors such as theft, unmetered homes, and inability to pay which at volume can lead to system instability, grid failure, and major(More)
Non-Technical Loss (NTL) represents a major challenge when providing reliable electrical service in developing countries, where it often accounts for 11-15% of total generation capacity [1]. NTL is caused by a variety of factors such as theft, unmetered homes, and inability to pay, which at volume can lead to system instability, grid failure, and major(More)
  • 1