Learn More
Cerebral cavernous malformations (CCMs) are sporadically acquired or inherited vascular lesions of the central nervous system consisting of clusters of dilated thin-walled blood vessels that predispose individuals to seizures and stroke. Familial CCM is caused by mutations in KRIT1 (CCM1) or in malcavernin (CCM2), the murine ortholog of which was(More)
Mutations in KRIT1, a protein initially identified based on a yeast two-hybrid interaction with the RAS-family GTPase RAP1A, are responsible for the development of the inherited vascular disorder cerebral cavernous malformations (CCM1). As the function of the KRIT1 protein and its role in CCM pathogenesis remain unknown, we performed yeast two-hybrid(More)
Cerebral cavernous malformations (CCMs) are congenital vascular anomalies of the central nervous system that can result in hemorrhagic stroke, seizures, recurrent headaches, and focal neurologic deficits. Mutations in the gene KRIT1 are responsible for type 1 CCM (CCM1). We report that a novel gene, MGC4607, exhibits eight different mutations in nine(More)
Advances in our understanding of fundamental biological processes can be made by the analysis of defects manifested in inherited diseases. The genes responsible for these genetic syndromes often encode proteins that act at critical points of the pathways that control biological processes such as cell proliferation, cell-cell communication, cellular(More)
Kinase inhibitors have limited success in cancer treatment because tumors circumvent their action. Using a quantitative proteomics approach, we assessed kinome activity in response to MEK inhibition in triple-negative breast cancer (TNBC) cells and genetically engineered mice (GEMMs). MEK inhibition caused acute ERK activity loss, resulting in rapid c-Myc(More)
Cerebral cavernous malformations are vascular defects of the central nervous system consisting of clusters of dilated vessels that are subject to frequent hemorrhaging. The genes mutated in three forms of autosomal dominant cerebral cavernous malformations have been cloned, but it remains unclear which cell type is ultimately responsible for the lesion. In(More)
Cerebral cavernous malformations (CCM) consist of clusters of abnormally dilated blood vessels. Hemorrhaging of these lesions can cause seizures and lethal stroke. Three loci are associated with autosomal dominant CCM, and the causative genes have been identified for CCM1 and CCM2. We have generated mice with a targeted mutation of the Ccm1 gene, but an(More)
RhoA and RhoC GTPases share 92% amino acid sequence identity, yet play different roles in regulating cell motility and morphology. To understand these differences, we developed and validated a biosensor of RhoC activation (RhoC FLARE). This was used together with a RhoA biosensor to compare the spatio-temporal dynamics of RhoA and RhoC activity during cell(More)
The past few years have seen rapid advances in our understanding of the genetics and molecular biology of cerebral cavernous malformations (CCM). This article summarizes the recent cloning of the CCM1, CCM2, and CCM3 genes, which are responsible for autosomal dominant CCM, and also describes current hypotheses for their roles in integrin and p38(More)