Learn More
The small heat shock protein HSP20 is known to be cardioprotective during times of stress and the mechanism underlying its protective abilities depends on its phosphorylation on Ser16 by PKA (protein kinase A). Although the external stimuli that trigger Ser16 phosphorylation have been well studied, the events that modulate spatial and temporal control of(More)
Enzymes from the PDE (phosphodiesterase) 4 cAMP-specific PDE family are crucial for the maintenance of compartmentalized cAMP responses in many cell types. Regulation of PDE activity can be achieved via post-translational modification such as phosphorylation by ERK (extracellular-signal-regulated kinase) MAPKs (mitogen-activated protein kinases) and PKA(More)
Symbionts can have mutualistic effects that increase their host's fitness and/or parasitic effects that reduce it. Which of these strategies evolves depends in part on the balance of their costs and benefits to the symbiont. We have examined these questions in Wolbachia, a vertically transmitted endosymbiont of insects that can provide protection against(More)
V-raf-1 murine leukemia viral oncogene homolog 1 (Raf-1) is a key activator of the ERK pathway and is a target for cross-regulation of this pathway by the cAMP signaling system. The cAMP-activated protein kinase, PKA, inhibits Raf-1 by phosphorylation on S259. Here, we show that the cAMP-degrading phosphodiesterase-8A (PDE8A) associates with Raf-1 to(More)
Activation of the small GTPase RhoA following angiotensin II stimulation is known to result in actin reorganization and stress fiber formation. Full activation of RhoA, by angiotensin II, depends on the scaffolding protein β-arrestin 1, although the mechanism behind its involvement remains elusive. Here we uncover a novel partner and function for β-arrestin(More)
PDE4 family cAMP phosphodiesterases play a pivotal role in determining compartmentalised cAMP signalling through targeted cAMP breakdown. Expressing the widely found PDE4D5 isoform, as both bait and prey in a yeast 2-hybrid system, we demonstrated interaction consistent with the notion that long PDE4 isoforms form dimers. Four potential dimerization sites(More)
PDE4 is one of eleven known cyclic nucleotide phosphodiesterase families and plays a pivotal role in mediating hydrolytic degradation of the important cyclic nucleotide second messenger, cyclic 3'5' adenosine monophosphate (cAMP). PDE4 inhibitors are known to have anti-inflammatory properties, but their use in the clinic has been hampered by(More)
DISC1 is a multifunctional, intracellular scaffold protein. At the cellular level, DISC1 plays a pivotal role in neural progenitor proliferation, migration, and synaptic maturation. Perturbation of the biological pathways involving DISC1 is known to lead to behavioral changes in rodents, which supports a clinical report of a Scottish pedigree in which the(More)
Phosphodiesterase (PDE) inhibitors are currently under evaluation as agents that may facilitate the improvement of cognitive impairment associated with Alzheimer's disease. Our aim was to determine whether inhibitors of PDEs 4, 5 and 9 could alleviate the cytotoxic effects of amyloid beta 1-42 (Aβ1-42) via a mechanism involving the small heatshock protein(More)
Disrupted in schizophrenia 1 (DISC1) is a multi-functional scaffolding protein that has been associated with neuropsychiatric disease. The role of DISC1 is to assemble protein complexes that promote neural development and signaling, hence tight control of the concentration of cellular DISC1 in neurons is vital to brain function. Using structural and(More)
  • 1