Jon M. Tinsley

Learn More
Many cell adhesion-dependent processes are regulated by tyrosine phosphorylation. In order to investigate the role of tyrosine phosphorylation of the utrophin-dystroglycan complex we treated suspended or adherent cultures of HeLa cells with peroxyvanadate and immunoprecipitated (beta)-dystroglycan and utrophin from cell extracts. Western blotting of(More)
Asthma is a common disease in children and young adults. Four separate reports have linked asthma and related phenotypes to an ill-defined interval between 2q14 and 2q32 (refs. 1–4), and two mouse genome screens have linked bronchial hyper-responsiveness to the region homologous to 2q14 (refs. 5,6). We found and replicated association between asthma and the(More)
Utrophin, or dystrophin-related protein, is an autosomal homologue of dystrophin. The protein is apparently ubiquitously expressed and in muscle tissues the expression is developmentally regulated. Since utrophin has a similar domain structure to dystrophin it has been suggested that it could substitute for dystrophin in dystrophic muscle. Like dystrophin,(More)
Dystrophin-related protein (DRP or 'utrophin') is localized in normal adult muscle primarily at the neuromuscular junction. In the absence of dystrophin in Duchenne muscular dystrophy (DMD) patients, DRP is also present in the sarcolemma. DRP is expressed in fetal and regenerating muscle and may play a similar role to dystrophin in early development,(More)
Duchenne muscular dystrophy (DMD) is a severe, progressive muscle-wasting disease that causes cardiac or respiratory failure and results in death at about 20 years of age. Replacement of the missing protein, dystrophin, using myoblast transfer in humans or viral/liposomal delivery in the mouse DMD model is inefficient and short-lived. One alternative(More)
The modulation of utrophin gene expression in muscle by the nerve-derived factor agrin plausibly involves the trophic factor ARIA/heregulin. Here we show that heregulin treatment of mouse and human cultured myotubes caused a approximately 2.5-fold increase in utrophin mRNA levels. Transient transfection experiments with utrophin promoter-reporter gene(More)
Utrophin is a ubiquitously expressed cytoskeletal protein which is an important structural component of the mammalian neuromuscular junction. It shows extensive sequence similarity to dystrophin leading to postulation that utrophin may be able to compensate for the absence of dystrophin in Duchenne muscular dystrophy (DMD) patients. In order to study the(More)
Duchenne muscular dystrophy is a prevalent X-linked neuromuscular disease for which there is currently no cure. Recently, it was demonstrated in a transgenic mouse model that utrophin could functionally compensate for the lack of dystrophin and alleviate the muscle pathology (Tinsley, J. M., Potter, A. C., Phelps, S. R., Fisher, R., Trickett, J. I., and(More)
Utrophin is an autosomally-encoded homologue of dystrophin, the protein product of the Duchenne muscular dystrophy (DMD) gene. Although, utrophin is very similar in sequence to dystrophin and possesses many of the protein-binding properties ascribed to dystrophin, both proteins are expressed in an apparently reciprocal manner and may be coordinately(More)
Utrophin is a close homolog of dystrophin, the protein whose mutations cause Duchenne muscular dystrophy (DMD). Utrophin is present at low levels in normal and dystrophic muscle, whereas dystrophin is largely absent in DMD. In such cases, the replacement of dystrophin using a utrophin gene transfer strategy could be more advantageous because utrophin would(More)