Learn More
Initiation of DNA replication at the Escherichia coli chromosomal origin occurs through an ordered series of events that depends first on the binding of DnaA protein, the replication initiator, to DnaA box sequences followed by unwinding of an AT-rich region. A step that follows is the binding of DnaB helicase at oriC so that it is properly positioned at(More)
To initiate DNA replication, DnaA recognizes and binds to specific sequences within the Escherichia coli chromosomal origin (oriC), and then unwinds a region within oriC. Next, DnaA interacts with DnaB helicase in loading the DnaB-DnaC complex on each separated strand. Primer formation by primase (DnaG) induces the dissociation of DnaC from DnaB, which(More)
Escherichia coli HU protein is a dimer encoded by two closely related genes whose expression is growth phase-dependent. As a major component of the bacterial nucleoid, HU binds to DNA non-specifically, but acts at the chromosomal origin (oriC) during initiation by stimulating strand opening in vitro. We show that the alpha dimer of HU is more active than(More)
An enzyme system that replicates plasmids bearing the origin of the Escherichia coli chromosomes (oriC) has the following physiologically relevant features. The system (i) depends completely on low levels of exogenously furnished supercoiled oriC plasmids, (ii) uses only those plasmids that contain the intact oriC region of about 245 base pairs, (iii)(More)
Iterated DnaA box sequences within the replication origins of bacteria and prokaryotic plasmids are recognized by the replication initiator, DnaA protein. At the E. coli chromosomal origin, oriC, DnaA is speculated to oligomerize to initiate DNA replication. We developed an assay of oligomer formation at oriC that relies on complementation between two dnaA(More)
In the initiation of bacterial DNA replication, DnaA protein recruits DnaB helicase to the chromosomal origin, oriC, leading to the assemble of the replication fork machinery at this site. Because a region near the N terminus of DnaA is required for self-oligomerization and the loading of DnaB helicase at oriC, we asked if these functions are separable or(More)
Elevated dnaA expression from a multicopy plasmid induces more frequent initiation from the Escherichia coli replication origin, oriC, but viability is maintained. In comparison, chromosomally encoded dnaAcos also stimulates initiation, but this is lethal. By quantitative methods, we show that the level of initiation induced by elevated dnaA expression(More)
Replication of P1 plasmid requires both the plasmid-specific initiator, RepA, and the host initiator, DnaA. Here we show that DnaA can make the P1 origin reactive to the single-strand specific reagents KMnO4 and mung bean nuclease. Addition of RepA further increased the KMnO4 reactivity of the origin, although RepA alone did not influence the reaction. The(More)
Escherichia coli is a model system to study the mechanism of DNA replication and its regulation during the cell cycle. One regulatory pathway ensures that initiation of DNA replication from the chromosomal origin, oriC, is synchronous and occurs at the proper time in the bacterial cell cycle. A major player in this pathway is SeqA protein and involves its(More)
An AAA+ ATPase, DnaC, delivers DnaB helicase at the E. coli chromosomal origin by a poorly understood process. This report shows that mutant proteins bearing alanine substitutions for two conserved arginines in a motif named box VII are defective in DNA replication, but this deficiency does not arise from impaired interactions with ATP, DnaB, or(More)