Learn More
Increasing evidence implicates Ca(2+) in the control of cell migration. However, the underlying mechanisms are incompletely understood. Acidic Ca(2+) stores are fast emerging as signaling centers. But how Ca(2+) is taken up by these organelles in metazoans and the physiological relevance for migration is unclear. Here, we identify a vertebrate(More)
Cation/H(+) exchangers encoded by CAX genes play an important role in the vacuolar accumulation of metals including Ca(2+) and Mn(2+). Arabidopsis thaliana CAX1 and CAX3 have been previously shown to differ phylogenetically from CAX2 but the physiological roles of these different transporters are still unclear. To examine the functions and the potential of(More)
Ca(2+) contributes to a myriad of important cellular processes in all organisms, including the apicomplexans, Plasmodium and Toxoplasma. Due to its varied and essential roles, free Ca(2+) is tightly regulated by complex mechanisms. These mechanisms are therefore of interest as putative drug targets. One pathway in Ca(2+) homeostatic control in apicomplexans(More)
Cation transport is a critical process in all organisms and is essential for mineral nutrition, ion stress tolerance, and signal transduction. Transporters that are members of the Ca(2+)/cation antiporter (CaCA) superfamily are involved in the transport of Ca(2+) and/or other cations using the counter exchange of another ion such as H(+) or Na(+). The CaCA(More)
Vacuolar localized Ca(2+)/H(+) exchangers such as Arabidopsis thaliana cation exchanger 1 (CAX1) play important roles in Ca(2+) homeostasis. When expressed in yeast, CAX1 is regulated via an N-terminal autoinhibitory domain. In yeast expression assays, a 36 amino acid N-terminal truncation of CAX1, termed sCAX1, and variants with specific mutations in this(More)
Intracellular pH homeostasis is an essential process in all plant cells. The transport of H(+) into intracellular compartments is critical for providing pH regulation. The maintenance of correct luminal pH in the vacuole and in compartments of the secretory/endocytic pathway is important for a variety of cellular functions including protein modification,(More)
Iron is an essential micronutrient but is also highly toxic. In yeast and plant cells, a key detoxifying mechanism involves iron sequestration into intracellular storage compartments, mediated by members of the vacuolar iron-transporter (VIT) family of proteins. Here we study the VIT homologue from the malaria parasites Plasmodium falciparum (PfVIT) and(More)
Fig. S1. Comparison of the effect of different data processing methods of FT-IR spectra on sample clustering, using C. reinhardtii grown in either standard TAP, Low P TAP, or Low N TAP media. PCA score plots of cut-down spectra processed using EMSC2 normalisation without derivatisation (a, b), spectra converted to their 1 st derivative before EMSC2(More)
Ca(2+) -dependent signalling processes enable plants to perceive and respond to diverse environmental stressors, such as osmotic stress. A clear understanding of the role of spatiotemporal Ca(2+) signalling in green algal lineages is necessary in order to understand how the Ca(2+) signalling machinery has evolved in land plants. We used single-cell imaging(More)