Learn More
Transmitters mediating 'fast' synaptic processes in the vertebrate central nervous system are commonly placed in two separate categories that are believed to exhibit no interaction at the receptor level. The 'inhibitory transmitters' (such as glycine and GABA) are considered to act only on receptors mediating a chloride conductance increase, whereas(More)
Oxidative stress can trigger neuronal cell death and has been implicated in several chronic neurological diseases and in acute neurological injury. Oxidative toxicity can be induced by glutamate treatment in cells that lack ionotrophic glutamate receptors, such as the immortalized HT22 hippocampal cell line and immature primary cortical neurons. Previously,(More)
N-methyl-d-aspartate (NMDA) receptors (NMDARs) are a major class of excitatory neurotransmitter receptors in the central nervous system. They form glutamate-gated ion channels that are highly permeable to calcium and mediate activity-dependent synaptic plasticity. NMDAR dysfunction is implicated in multiple brain disorders, including stroke, chronic pain(More)
The vital roles played by NMDA receptors in CNS physiology depend critically on powerful voltage-dependent channel block by external Mg(2+) (Mg(2+)(o)). NMDA receptor channel block by Mg(2+)(o) depends on receptor subunit composition: NR1/2A receptors (receptors composed of NR1 and NR2A subunits) and NR1/2B receptors are more strongly inhibited by Mg(2+)(o)(More)
1. The characteristics of the activation of the N-methyl-D-aspartate (NMDA) response by glycine were studied using whole-cell and outside-out patch clamp recording techniques. 2. Glycine concentration-response (C-R) curves were measured in the presence of 10 microM-NMDA and fitted with the Hill equation modified to account for the response to NMDA observed(More)
N-methyl-D-aspartate receptors (NMDARs) mediate interneuronal communication and are broadly involved in nervous system physiology and pathology (Dingledine et al., 1999). Memantine, a drug that blocks the ion channel formed by NMDARs, is a widely prescribed treatment of Alzheimer's disease (Schmitt, 2005; Lipton, 2006; Parsons et al., 2007). Research on(More)
Block of the channel of N-methyl-D-aspartate (NMDA) receptors by external Mg(2+) (Mg(o)(2+)) has broad implications for the many physiological and pathological processes that depend on NMDA receptor activation. An essential property of channel block by Mg(o)(2+) is its powerful voltage dependence. A widely cited explanation for the strength of the voltage(More)
The N-methyl-D-aspartate (NMDA)-activated channel, which is known to be blocked by extracellular Mg ions, is shown also to be blocked by intracellular Mg ions. The block by intracellular Mg can be explained by assuming that Mg ions from the intracellular side enter the membrane electrical field before binding to the blocking site. The dissociation constant(More)
NMDA receptors (NMDARs) are glutamate-gated ion channels that are present at most excitatory mammalian synapses. The four GluN2 subunits (GluN2A-D) contribute to four diheteromeric NMDAR subtypes that have divergent physiological and pathological roles. Channel properties that are fundamental to NMDAR function vary among subtypes. We investigated the amino(More)
Ionotropic glutamate receptor (iGluR) subunits contain a large N-terminal domain (NTD) that precedes the agonist-binding domain (ABD) and participates in subunit oligomerization. In NMDA receptors (NMDARs), the NTDs of NR2A and NR2B subunits also form binding sites for the endogenous inhibitor Zn(2+) ion. Although these allosteric sites have been(More)