Learn More
A new method is given for performing approximate maximum-likelihood (ML) decoding of an arbitrary binary linear code based on observations received from any discrete memoryless symmetric channel. The decoding algorithm is based on a linear programming (LP) relaxation that is defined by a factor graph or parity-check representation of the code. The resulting(More)
Error-correcting codes are fundamental tools used to transmit digital information over unreliable channels. Their study goes back to the work of Hamming [Ham50] and Shannon [Sha48], who used them as the basis for the field of information theory. The problem of decoding the original information up to the full error-correcting potential of the system is often(More)
Sensor networks are especially useful in catastrophic or emergency scenarios such as floods, fires, terrorist attacks or earthquakes where human participation may be too dangerous. However, such disaster scenarios pose an interesting design challenge since the sensor nodes used to collect and communicate data may themselves fail suddenly and unpredictably,(More)
Sponsored search involves running an auction among advertisers who bid in order to have their ad shown next to search results for specific keywords. The most popular auction for sponsored search is the “Generalized Second Price” (GSP) auction where advertisers are assigned to slots in the decreasing order of their score, which is defined as the product of(More)
We study the online stochastic bipartite matching problem, in a form motivated by display ad allocation on the Internet. In the online, but adversarial case, the celebrated result of Karp, Vazirani and Vazirani gives an approximation ratio of $1-{1\over e} \simeq 0.632$, a very familiar bound that holds for many online problems; further, the bound is tight(More)
We show that for low-density parity-check (LDPC) codes whose Tanner graphs have sufficient expansion, the linear programming (LP) decoder of Feldman, Karger, and Wainwright can correct a constant fraction of errors. A random graph will have sufficient expansion with high probability, and recent work shows that such graphs can be constructed efficiently. A(More)
Divide-and-conquer approximation algorithms for vertex ordering problems partition the vertex set of graphs, compute recursively an ordering of each part, and “glue” the orderings of the parts together. The computed ordering is specified by a decomposition tree that describes the recursive partitioning of the subproblems. At each internal node of the(More)
We consider the problem of using a multicast network code to transmit information securely in the presence of a “wire-tap” adversary who can eavesdrop on a bounded number of network edges. Cai & Yeung (ISIT, 2002) gave a method to alter any given linear network code into a new code that is secure. However, their construction is in general inefficient, and(More)
Many popular search engines run an auction to determine the placement of advertisements next to search results. Current auctions at Google and Yahoo! let advertisers specify a single amount as their bid in the auction. This bid is interpreted as the maximum amount the advertiser is willing to pay per click on its ad. When search queries arrive, the bids are(More)
Internet search companies sell advertisement slots based on users' search queries via an auction. While there has been previous work onthe auction process and its game-theoretic aspects, most of it focuses on the Internet company. In this work, we focus on the advertisers, who must solve a complex optimization problem to decide how to place bids on keywords(More)