Jon D. Robertus

Learn More
Class II chitinases (EC 3.2.1.14) are plant defense proteins. They hydrolyze chitin, an insoluble beta-1,4-linked polymer of N-acetylglucosamine (NAG), which is a major cell-wall component of many fungal hyphae. We previously reported the three-dimensional structure of the 26 kDa class II endochitinase from barley seeds at 2.8 A resolution, determined using(More)
Ebulin l is a type-II ribosome-inactivating protein (RIP) isolated from the leaves of Sambucus ebulus L. As with other type-II RIP, ebulin is a disulfide-linked heterodimer composed of a toxic A chain and a galactoside-specific lectin B chain. A normal level of ribosome-inactivating N-glycosidase activity, characteristic of the A chain of type-II RIP, has(More)
The x-ray crystallographic structure of the heterodimeric plant toxin ricin has been determined at 2.8-A resolution. The A chain enzyme is a globular protein with extensive secondary structure and a reasonably prominent cleft assumed to be the active site. The B chain lectin folds into two topologically similar domains, each binding lactose in a shallow(More)
To investigate structure-function relationships in plant chitinases, we have developed a heterologous expression system for the 26 kDa endochitinase from Hordeum vulgare L. (barley). Escherichia coli cells harbouring the gene in a T7 RNA polymerase-based expression vector synthesized completely insoluble recombinant protein under standard induction(More)
Ricin is a potent cytotoxin which has been used widely in the construction of therapeutic agents such as immunotoxins. Recently it has been used by governments and underground groups as a poison. There is interest in identifying and designing effective inhibitors of the ricin A chain (RTA). In this study computer-assisted searches indicated that pterins(More)
Ricin is a dimeric toxin from the castor bean Ricinus communis, which is composed of a sugar-binding subunit (B) that attaches to receptors on the surfaces of target cells and a subunit (A) with enzymatic activity that attacks and inactivates ribosomes. We report here that comparison of amino-acid sequence data with high-resolution structure analysis of the(More)
Barley chitinase, bacterial chitosanase, and lysozymes from goose (GEWL), phage (T4L) and hen (HEWL) all hydrolyse related polysaccharides. The proteins share no significant amino-acid similarities, but have a structurally invariant core consisting of two helices and a three-stranded beta-sheet which form the substrate-binding and catalytic cleft. These(More)
Allosamidin is a known inhibitor of class 18 chitinases. We show that allosamidin is a competitive inhibitor of the fungal chitinase CiX1 from Coccidioides immitis, with a K(i) of 60 nM. We report the X-ray structure of the complex and show that upon inhibitor binding the side-chain of Asp169 rotates to form an ion pair with the oxazolinium cation. The(More)