Learn More
The plant cytotoxin ricin consists of two disulfide-linked chains, each of about 30,000 daltons. An initial model based on a 2.8 A MIR electron density map has been refined against 2.5 A data using rounds of hand rebuilding coupled with either a restrained least squares algorithm or molecular dynamics (XPLOR). The last model (9) has an R factor of 21.6% and(More)
Class II chitinases (EC 3.2.1.14) are plant defense proteins. They hydrolyze chitin, an insoluble beta-1,4-linked polymer of N-acetylglucosamine (NAG), which is a major cell-wall component of many fungal hyphae. We previously reported the three-dimensional structure of the 26 kDa class II endochitinase from barley seeds at 2.8 A resolution, determined using(More)
Ricin A-chain is an N-glucosidase that attacks ribosomal RNA at a highly conserved adenine residue. Our recent crystallographic studies show that not only adenine and formycin, but also pterin-based rings can bind in the active site of ricin. For a better understanding of the means by which ricin recognizes adenine rings, the geometries and interaction(More)
The endochitinase from barley is the archetypal enzyme for a large class of plant-derived antifungal chitinases. The X-ray structure was solved previously in our laboratory and a mechanism of action proposed based on structural considerations. In this manuscript we report the use of a defined soluble substrate, 4-methylumbelliferyl(More)
The X-ray structure of chitinase from the fungal pathogen Coccidioides immitis has been solved to 2.2 A resolution. Like other members of the class 18 hydrolase family, this 427 residue protein is an eight-stranded beta/alpha-barrel. Although lacking an N-terminal chitin anchoring domain, the enzyme closely resembles the chitinase from Serratia marcescens.(More)
The nonstructural protein NS1A from influenza virus is a multifunctional virulence factor and a potent inhibitor of host immunity. It has two functional domains: an N-terminal 73-amino-acid RNA-binding domain and a C-terminal effector domain. Here, the crystallographic structure of the NS1A effector domain of influenza A/Udorn/72 virus is presented.(More)
We have solved the X-ray structure of barley chitinase and bacterial chitosanase. Structural constraints predicted these would work by an inverting mechanism, which has been confirmed biochemically. The two enzymes were compared with lysozymes from goose (GEWL), phage (T4L), and hen (HEWL). Although the proteins share no significant amino acid similarities,(More)
Ricin is a potent cytotoxin easily purified in large quantities. It presents a significant public health concern due to its potential use as a bioterrorism agent. For this reason, extensive efforts have been underway to develop antidotes against this deadly poison. The catalytic A subunit of the heterodimeric toxin has been biochemically and structurally(More)
The flavin-containing monooxygenase from Saccharomyces cerevisiae (yFMO) uses NADPH and O(2) to oxidize thiol containing substrates such as GSH and thereby generates the oxidizing potential for the ER. The enzyme uses NADPH 12 times more efficiently than NADH. Amino acid sequence analysis suggests that Lys 219 and/or Lys 227 may act as counterions to the 2'(More)