Learn More
Following a cerebral cortex injury such as stroke, excessive inhibition around the core of the injury is thought to reduce the potential for new motor learning. In part, this may be caused by an imbalance of interhemispheric inhibition (IHI); therefore, treatments that relieve the inhibitory drive from the healthy hemisphere to the peri-lesional area may(More)
We use neural field theory and spike-timing dependent plasticity to make a simple but biophysically reasonable model of long-term plasticity changes in the cortex due to transcranial magnetic stimulation (TMS). We show how common TMS protocols can be captured and studied within existing neural field theory. Specifically, we look at repetitive TMS protocols(More)
The calcium dependent plasticity (CaDP) approach to the modeling of synaptic weight change is applied using a neural field approach to realistic repetitive transcranial magnetic stimulation (rTMS) protocols. A spatially-symmetric nonlinear neural field model consisting of populations of excitatory and inhibitory neurons is used. The plasticity between(More)
SUMMARY Despite the widespread use of repetitive transcranial magnetic stimulation (rTMS) in both research and clinical settings, there is a paucity of evidence regarding the effects of its application on neural activity. Studies investigating the effects of rTMS on human participants (Huang et al., 2005) have shown that patterned trains of rTMS can be used(More)
BACKGROUND Growing evidence demonstrates unique synergistic signatures in the lower limb (LL) post-stroke, with specific across-plane and across-joint representations. While the inhibitory role of the ipsilateral hemisphere in the upper limb (UL) has been widely reported, examination of the contralesional hemisphere (CON-H) in modulating LL expressions of(More)
  • 1