Jon A Crowcroft

Learn More
This paper proposes COPE, a new architecture for wireless mesh networks. In addition to forwarding packets, routers mix (i.e., code) packets from different sources to increase the information content of each transmission. We show that intelligently mixing packets increases network throughput. Our design is rooted in the theory of network coding. Prior work(More)
In this paper we seek to improve our understanding of human mobility in terms of social structures, and to use these structures in the design of forwarding algorithms for Pocket Switched Networks (PSNs). Taking human mobility traces from the real world, we discover that human interaction is heterogeneous both in terms of hubs (popular individuals) and(More)
In recent years, several new architectures have been developed for supporting multimedia applications such as digital video and audio. However, quality of service routing is an important element that is still missing from these architectures. In this paper we consider a number of issues in QoS routing. We first examine the basic problem of QoS routing,(More)
Pocket Switched Networks (PSN) make use of both human mobility and local/global connectivity in order to transfer data between mobile users' devices. This falls under the Delay Tolerant Networking (DTN) space, focusing on the use of opportunistic networking. One key problem in PSN is in designing forwarding algorithms which cope with human mobility(More)
Over the Internet today, computing and communications environments are significantly more complex and chaotic than classical distributed systems, lacking any centralized organization or hierarchical control. There has been much interest in emerging Peer-to-Peer (P2P) network overlays because they provide a good substrate for creating large-scale data(More)
One of the central problems in one-to-many wide-area communications is forming the delivery tree - the collection of nodes and links that a multicast packet traverses. Significant problems remain to be solved in the area of multicast tree formation, the problem of scaling being paramount among these.In this paper we show how the current IP multicast(More)
Studying transfer opportunities between wireless devices carried by humans, we observe that the distribution of the inter-contact time, that is the time gap separating two contacts of the same pair of devices, exhibits an heavy tail such as one of a power law, over a large range of value. This observation is confirmed on six distinct experimental data sets.(More)
We present a novel congestion control algorithm suitable for use with cumulative, layered data streams in the MBone. Our algorithm behaves similarly to TCP congestion control algorithms, and shares bandwidth fairly with other instances of the protocol and with TCP flows. It is entirely receiver driven and requires no per-receiver status at the sender, in(More)
We study data transfer opportunities between wireless devices carried by humans. We observe that the distribution of the intercontact time (the time gap separating two contacts between the same pair of devices) may be well approximated by a power law over the range [10 minutes; 1 day]. This observation is confirmed using eight distinct experimental data(More)
This paper describes a system for automated generation of attack signatures for network intrusion detection systems. Our system applies pattern-matching techniques and protocol conformance checks on multiple levels in the protocol hierarchy to network traffic captured a honeypot system. We present results of running the system on an unprotected cable modem(More)