Jolyon P. Mitchell

Learn More
BACKGROUND Valved holding chambers (VHCs) are prescribed with pressurised metered dose inhalers (pMDIs) to improve medication delivery for the treatment of respiratory diseases because they reduce the need for the patient to co-ordinate inhaler actuation with the onset of inhalation. Although mechanically robust and clinically effective if properly designed(More)
The purpose of this paper is to review the approaches for analyzing cascade impactor (CI) mass distributions produced by pulmonary drug products and the considerations necessary for selecting the appropriate analysis procedure. There are several methods available for analyzing CI data, yielding a hierarchy of information in terms of nominal, ordinal and(More)
The movement of inhaler-generated aerosols is significantly influenced by electrostatic charge on the particles and on adjacent surfaces. Particle charging arises in the aerosol formation process. Since almost all inhalers contain nonconducting components, these surfaces can also acquire charge during manufacture and use. Spacers and valved holding chambers(More)
A new cascade impactor has been designed specifically for pharmaceutical inhaler testing. This impactor, called the Next Generation Pharmaceutical Impactor (NGI), has seven stages and is intended to operate at any inlet flow rate between 30 and 100 L/min. It spans a cut size (D50) range from 0.54-microm to 11.7-microm aerodynamic diameter at 30 L/min and(More)
The purpose of this research was to compare three different methods for the aerodynamic assessment of (1) chloroflurocarbon (CFC)-fluticasone propionate (Flovent), (2) CFC-sodium cromoglycate (Intal), and (3) hydrofluoroalkane (HFA)-beclomethasone dipropionate (Qvar) delivered by pressurized metered dose inhaler. Particle size distributions were compared(More)
Cascade impactors, including the multi-stage liquid impinger, are by far the most widely encountered means for the in vitro determination of the particle size distribution of aerosols from medical inhalers, both in product development, batch release and in applications with add-on devices. This is because they directly measure aerodynamic size, which is the(More)
The purpose of this article is to review the suitability of the analytical and statistical techniques that have thus far been developed to assess the dissolution behavior of particles in the respirable aerodynamic size range, as generated by orally inhaled products (OIPs) such as metered-dose inhalers and dry powder inhalers. The review encompasses all(More)
Time-of-flight (TOF) aerosol analyzers are a class of instruments that measure the aerodynamic diameter of individual particles following a controlled acceleration in a well-defined flow field. Two instruments have been used to analyze the size of medical aerosols: Aerosizer particle size analyzer (TSI Particle Instruments/Amherst, Amherst, MA), Aerodynamic(More)