Learn More
Neural prostheses translate neural activity from the brain into control signals for guiding prosthetic devices, such as computer cursors and robotic limbs, and thus offer individuals with disabilities greater interaction with the world. However, relatively low performance remains a critical barrier to successful clinical translation; current neural(More)
Cortically-controlled prosthetic systems aim to help disabled patients by translating neural signals from the brain into control signals for guiding prosthetic devices. Recent reports have demonstrated reasonably high levels of performance and control of computer cursors and prosthetic limbs, but to achieve true clinical viability, the long-term operation(More)
Communication neural prostheses are an emerging class of medical devices that aim to restore efficient communication to people suffering from paralysis. These systems rely on an interface with the user, either via the use of a continuously moving cursor (e.g., mouse) or the discrete selection of symbols (e.g., keyboard). In developing these interfaces, many(More)
Recurrent neural networks (RNNs) are useful tools for learning nonlinear relationships in time series data with complex temporal dependences. In this paper, we explore the ability of a simplified type of RNN, one with limited modifications to the internal weights called an echostate network (ESN), to effectively and continuously decode monkey reaches during(More)
OBJECTIVE The objective of this work was to quantitatively investigate the mechanisms underlying the performance gains of the recently reported 'recalibrated feedback intention-trained Kalman Filter' (ReFIT-KF). APPROACH This was accomplished by designing variants of the ReFIT-KF algorithm and evaluating training and online data to understand the neural(More)
Brain-machine interfaces (BMIs) aim to help disabled patients by translating neural signals from the brain into control signals for guiding prosthetic arms, computer cursors, and other assistive devices. Animal models are central to the development of these systems and have helped enable the successful translation of the first generation of BMIs. As we move(More)
OBJECTIVE Neural prostheses, or brain-machine interfaces, aim to restore efficient communication and movement ability to those suffering from paralysis. A major challenge these systems face is robust performance, particularly with aging signal sources. The aim in this study was to develop a neural prosthesis that could sustain high performance in spite of(More)
We present a novel brain machine interface (BMI) control algorithm, the recalibrated feedback intention-trained Kalman filter (ReFIT-KF). The design of ReFIT-KF is motivated from a feedback control perspective applied to existing BMI control algorithms. The result is two design innovations that alter the modeling assumptions made by these algorithms and the(More)
Objective. The objective of this work was to quantitatively investigate the mechanisms underlying the performance gains of the recently reported 'recalibrated feedback intention-trained Kalman Filter' (ReFIT-KF). Approach. This was accomplished by designing variants of the ReFIT-KF algorithm and evaluating training and online data to understand the neural(More)
  • 1