Learn More
Quantitative in situ hybridization and RNA blotting methods were used to define the time course and magnitude of changes in expression of mRNAs encoding peripherin and the neurofilament (NF) triplet proteins in rat dorsal root ganglion (DRG) neurons during axonal regeneration. mRNA levels in adult rat L4 and L5 DRGs were examined in autoradiograms after in(More)
A reduction in the supply of retrogradely transported NGF has been proposed as a possible signal for the axotomy response in dorsal root ganglion (DRG) neurons. Components of the axotomy response that have previously been well characterized in axotomized DRG cells include changes in cytoskeletal gene expression and changes in the expression of(More)
The effect of axotomy on the expression of the 57 kDa neuronal intermediate filament (IF) protein in adult rat dorsal root ganglion (DRG) neurons was examined. This IF protein is known to have an exclusively neuronal localization but is considerably more limited in its distribution in the nervous system than the neurofilament (NF) triplet proteins. The 57(More)
The effect of a change in neurofilament (NF) and tubulin gene expression on the elongation of axonal sprouts by adult rat sensory neurons was examined. Distal sciatic nerve crush axotomy was used to initiate changes in cytoskeletal gene expression in lumbar dorsal root ganglion (DRG) neurons. In situ hybridization of DRG neurons with 35S-labeled cDNA probes(More)
Neurofilaments (NFs) are predominant elements in large myelinated axons, where they are thought to serve the important function of maintaining axonal caliber. Previous studies have shown that changes in NF synthesis and axonal transport occur after axonal injury in rat dorsal root ganglion (DRG) cells. The resulting reduction in the NF supply to DRG axons(More)
In the mature rat dorsal root ganglion (DRG), only one tau isoform is expressed, and this protein (110 kDa in apparent molecular weight) is considerably larger in size than the predominant tau isoforms found in brain. The size of the mRNA encoding the "big" tau mRNA in DRG [approximately 8 kilobases (kb)] is also much larger than that of the major rat brain(More)
Adenosine produces a wide variety of physiological effects through the activation of specific adenosine receptors (A(1), A(2A), A(2B), A(3)). Adenosine, acting particularly at the A(2A) adenosine receptor (A(2A)AR), is a potent endogenous anti-inflammatory agent and sensor of inflammatory tissue damage. The complete healing of wounds is the final step in a(More)
  • 1