Johnny Ribeiro

Learn More
BACKGROUND Bone metastases are highly frequent complications of breast cancers. Current bone metastasis treatments using powerful anti-resorptive agents are only palliative indicating that factors independent of bone resorption control bone metastasis progression. Autotaxin (ATX/NPP2) is a secreted protein with both oncogenic and pro-metastatic properties.(More)
Key Points • ATX stored in a-granules of resting platelets is secreted upon tumor cell-induced aggregation leading to prometastatic LPA production. • Nontumoral ATX promotes early bone colonization by breast cancer cells and contributes to the progression of skeletal metastases. Autotaxin (ATX), through its lysophospholipase D activity controls(More)
Lysophosphatidic acid (LPA) is a bioactive lipid promoting cancer metastasis. LPA activates a series of six G protein-coupled receptors (LPA1-6). While blockage of LPA1in vivo inhibits breast carcinoma metastasis, down-stream genes mediating LPA-induced metastasis have not been yet identified. Herein we showed by analyzing publicly available expression data(More)
Metastasis is the main cause of death for cancer patients. Targeting factors that control metastasis formation is a major challenge for clinicians. Lysophosphatidic acid (LPA) is a bioactive phospholipid involved in cancer. LPA activates at least six independent G protein-coupled receptors (LPA1-6). Tumor cells frequently co-express multiple LPA receptors,(More)
Lysophosphatidic acid (LPA) is a natural bioactive lipid with growth factor-like functions due to activation of a series of six G protein-coupled receptors (LPA₁₋₆). LPA receptor type 1 (LPA₁) signaling influences the pathophysiology of many diseases including cancer, obesity, rheumatoid arthritis, as well as lung, liver and kidney fibrosis. Therefore, LPA₁(More)
  • 1