Johnny Moreira Gomes

Learn More
This paper compares different numerical methods for the solution of myocyte models of cardiac electrophysiology. In particular, it presents how the technique called uniformization method substantially increases the stability of simple first-order methods such as Euler explicit method and Rush-Larsen (RL) method, for the solution of modern electrophysiology(More)
In silico experiments have been used for a better understanding of the electrical activity of cardiac myocytes, usually via models based on nonlinear systems of ordinary differential equations. Many different models for cardiac myocytes are available that vary on the level of complexity, depending on how detailed the phenomena is described. Long simulations(More)
Cardiac electrical alternans is a period-2 dynamical behavior with alternating long and short action potential durations (APD) that often precedes dangerous arrhythmias associated with cardiac arrest. Despite the importance of alternans, many current ordinary differential equations models of cardiac electrophysiology do not produce alternans, thereby(More)
  • 1