Johnny D Figueroa

Learn More
Spinal cord injury (SCI) is characterized by a total or partial loss of motor and sensory functions due to the inability of neurons to regenerate. This lack of axonal regenerative response has been associated with the induction of inhibitory proteins for regeneration, such as the Eph receptor tyrosine kinases. One member of this family, the EphA4 receptor,(More)
After spinal cord injury (SCI), the inability of supraspinal neurons to regenerate or reform functional connections is likely due to proteins in the surrounding microenvironment restricting regeneration. EphAs are a family of receptor tyrosine kinases that are involved in axonal guidance during development. These receptors and their ligands, the Ephrins,(More)
Currently, few interventions have been shown to successfully limit the progression of secondary damage events associated with the acute phase of spinal cord injury (SCI). Docosahexaenoic acid (DHA, C22:6 n-3) is neuroprotective when administered following SCI, but its potential as a pretreatment modality has not been addressed. This study used a novel DHA(More)
Functional impairment after spinal cord injury (SCI) is partially attributed to neuronal cell death, with further degeneration caused by the accompanying apoptosis of myelin-forming oligodendrocytes. The Eph receptor protein tyrosine kinase family and its cognate ligands, the ephrins, have been identified to be involved in axonal outgrowth, synapse(More)
Omega-3 polyunsaturated fatty acids (ω-3 PUFAs) confer multiple health benefits and decrease the risk of neurological disorders. Studies are needed, however, to identify promising cellular targets and to assess their prophylactic value against neurodegeneration. The present study (1) examined the efficacy of a preventive diet enriched with ω-3 PUFAs to(More)
Spinal cord injury (SCI) releases a cascade of events that leads to the onset of an inhibitory milieu for axonal regeneration. Some of these changes result from the presence of repulsive factors that may restrict axonal outgrowth after trauma. The Eph receptor tyrosine kinase (RTK) family has emerged as a key repellent cue known to be involved in neurite(More)
Spinal cord injury (SCI) causes an increase of inhibitory factors that may restrict axonal outgrowth after trauma. During the past decade, the Eph receptors and ephrin ligands have emerged as key repulsive cues known to be involved in neurite outgrowth, synapse formation, and axonal pathfinding during development. Given the non-permissive environment for(More)
Spinal cord injury (SCI) triggers a sequel of events commonly associated with cell death and dysfunction of glias and neurons surrounding the lesion. Although astrogliosis and glial scar formation have been involved in both damage and repair processes after SCI, their role remains controversial. Our goal was to investigate the effects of the P2 receptors(More)
The ventral tegmental area (VTA) forms part of the mesocorticolimbic system and plays a pivotal role in reward and reinforcing actions of drugs of abuse. Glutamate transmission within the VTA controls important aspects of goal-directed behavior and motivation. Noradrenergic receptors also present in the VTA have important functions in the modulation of(More)
Failure of axon regeneration after traumatic spinal cord injury (SCI) is attributable in part to the presence of inhibitory molecular interactions. Recent evidence demonstrates that activation of Eph signaling pathways leads to modulation of growth cone dynamics and repulsion through the activation of ephexin, a novel guanine nucleotide exchange factor(More)