Learn More
We explore unsupervised representation learning of radio communication signals in raw sampled time series representation. We demonstrate that we can learn modulation basis functions using convolutional autoencoders and visually recognize their relationship to the analytic bases used in digital communications. We also propose and evaluate quantitative(More)
—We investigate sequence machine learning techniques on raw radio signal time-series data. By applying deep recurrent neural networks we learn to discriminate between several application layer traffic types on top of a constant envelope modulation without using an expert demodulation algorithm. We show that complex protocol sequences can be learned and used(More)
  • 1