Learn More
Tactile performance of human fingertips is associated with activity of the nerve endings and sensitivity of the soft tissue within the fingertip to the static and dynamic skin indentation. The nerve endings in the fingertips sense the stress/strain states developed within the soft tissue, which are affected by the material properties of the tissues. The(More)
Vibrotactile perception threshold measurement has been widely used to diagnose the severity of peripheral neuropathy associated with hand-arm vibration syndrome and sensory losses in stroke and diabetic patients. The vibration perception threshold is believed to be influenced by many factors, such as contact force and vibration frequency. The present study(More)
Previous experimental observations indicated that the contact interactions between finger and tool handle interfere with the grasp stability, affecting the comfort and manipulations of handheld tools. From a biomechanical point of view, the curvature of the contact surface should affect the contact pressure and contact area, and thereby the comfort and(More)
Many neural and vascular diseases in hands and fingers have been related to the degenerative responses of local neural and vascular systems in fingers to excessive dynamic loading. Since fingerpads serve as a coupling element between the hand and the objects, the investigation of the dynamic coupling between fingertip and subjects could provide important(More)
Extended exposure to mechanical vibration has been related to many vascular, sensorineural and musculoskeletal disorders of the hand-arm system, frequently termed 'hand-arm vibration syndrome' (HAVS). A two-dimensional, nonlinear finite element model of a fingertip is developed to study the stress and strain fields of the soft tissue under dynamic loading,(More)
A methodology for measuring the vibration energy absorbed into the fingers and the palm exposed to vibration is proposed to study the distribution of the vibration energy absorption (VEA) in the fingers-hand-arm system and to explore its potential association with vibration-induced white finger (VWF). The study involved 12 adult male subjects,(More)
An extended exposure to repeated loading on fingertip has been associated to many vascular, sensorineural, and musculoskeletal disorders in the fingers, such as carpal tunnel syndrome, hand-arm vibration syndrome, and flexor tenosynovitis. A better understanding of the pathomechanics of these sensorineural and vascular diseases in fingers requires a(More)
The reduction in vibrotactile sensitivity in the fingertip is assumed to be associated with the exposure of the tissues to repetitive, non-physiological strains during dynamic loading. Experimental results demonstrated that the magnitude of a vibration-induced temporary threshold shift is dependent upon the vibration frequency of both the exposure and(More)
BACKGROUND Knowledge of the biodynamic response (BR) of the human hand-arm system is an important part of the foundation for the measurement and assessment of hand-transmitted vibration exposure. This study investigated the BR of human fingers in a power grip subjected to a random vibration. METHOD Ten male subjects were used in the experiment. Each(More)
Vibrotactile thresholds at the fingertips are affected by a number of individual, environmental, and testing factors. In the current study, we theoretically analyzed the effects of the contact orientation of the probe on the fingertip and the static pre-indentation on the dynamic deformation of the soft tissues of the fingertip in the vibrotactile tests(More)