John William Wannop

Learn More
BACKGROUND Traction is influenced by the sole architecture and playing surface, with increases in traction potentially leading to injury. The mechanism as to how or why increased traction could lead to injury remains unknown. PURPOSE This study was undertaken to determine how shoes of different sole designs and traction influence knee and ankle joint(More)
Authors who report ground reaction force (GRF), free moment (FM), and resultant joint moments usually normalize these variables by division normalization. Normalization parameters include body weight (BW), body weight x height (BWH), and body weight x leg length (BWL). The purpose of this study was to explore the appropriateness of division normalization,(More)
Outdoor activities are a popular form of recreation, with hiking being the most popular outdoor activity as well as being the most prevalent in terms of injury. Over the duration of a hike, trekkers will encounter many different sloped terrains. Not much is known about the required traction or foot-floor kinematics during locomotion on these sloped(More)
PURPOSE Football is the most popular high school sport; however, it has the highest rate of injury. Speculation has been prevalent that foot fixation due to high footwear traction contributes to injury risk. Therefore, the purpose of the study was to determine whether a relationship exists between the athlete's specific footwear traction (measured with(More)
Prior research has shown that footwear can enhance athletic performance. However, public information is not available on what basketball shoe properties should be selected to maximise movement performance. Therefore, the purpose of the study was to investigate the influence of basketball shoe mass, outsole traction, and forefoot bending stiffness on(More)
Compression apparel alters both compression of the soft tissues and the hip joint stiffness of athletes. It is not known whether it is the compression elements, the stiffness elements, or some combination that increases performance. Therefore, the purpose of this study was to determine how systematically increasing upper leg compression and hip joint(More)
Previous studies have linked footwear traction to lower extremity non-contact injury; however, these studies mainly focussed on rotational traction exclusively. While studies have shown that increases in traction lead to increases in joint loading, represented by joint moments, these studies failed to determine how the individual components of rotational(More)
There are many aspects of cutting movements that can limit performance, however, the implementation of lateral banking may reduce some of these limitations. Banking could provide a protective mechanism, placing the foot and ankle in orientations that keep them out of dangerous positions. This study sought to determine the effect of two banking angles on the(More)
  • 1