Learn More
We derive a stochastic optimization algorithm for mean field variational inference, which we call online variational inference. Our algorithm approximates the posterior distribution of a probabilistic model with hidden variables, and can handle large (or even streaming) data sets of observations. Let x = x 1:n be n observations, β be global hidden(More)
Nonparametric Bayesian methods are considered for recovery of imagery based upon compressive, incomplete, and/or noisy measurements. A truncated beta-Bernoulli process is employed to infer an appropriate dictionary for the data under test and also for image recovery. In the context of compressive sensing, significant improvements in image recovery are(More)
The hierarchical Dirichlet process (HDP) is a Bayesian nonparametric model that can be used to model mixed-membership data with a potentially infinite number of components. It has been applied widely in probabilistic topic modeling, where the data are documents and the components are distributions of terms that reflect recurring patterns (or " topics ") in(More)
Non-parametric Bayesian techniques are considered for learning dictionaries for sparse image representations, with applications in denoising, inpainting and com-pressive sensing (CS). The beta process is employed as a prior for learning the dictionary, and this non-parametric method naturally infers an appropriate dictionary size. The Dirichlet process and(More)
The number of states in a hidden Markov model (HMM) is an important parameter that has a critical impact on the inferred model. Bayesian approaches to addressing this issue include the nonparametric hierarchical Dirichlet process, which does not extend to a variational Bayesian (VB) solution. We present a fully conjugate, Bayesian approach to determining(More)
We present the discrete infinite logistic normal distribution (DILN, " Dylan "), a Bayesian non-parametric prior for mixed membership models. DILN is a generalization of the hierarchical Dirichlet process (HDP) that models correlation structure between the weights of the atoms at the group level. We derive a representation of DILN as a normalized collection(More)
Mean-field variational inference is a method for approximate Bayesian posterior inference. It approximates a full posterior distribution with a factorized set of distributions by maximizing a lower bound on the marginal likelihood. This requires the ability to integrate a sum of terms in the log joint likelihood using this factorized distribution. Often not(More)
We develop a nested hierarchical Dirichlet process (nHDP) for hierarchical topic modeling. The nHDP generalizes the nested Chinese restaurant process (nCRP) to allow each word to follow its own path to a topic node according to a per-document distribution over the paths on a shared tree. This alleviates the rigid, single-path formulation assumed by the(More)