Learn More
The liver plays a key role in removing harmful chemicals from the body and is therefore often the first tissue to suffer potentially adverse consequences. To protect public health it is necessary to quantitatively estimate the risk of long-term low dose exposure to environmental pollutants. Animal testing is the primary tool for extrapolating human risk but(More)
We study stochastic transport of fluxons in superconductors by alternating current (ac) rectification. Our simulated system provides a fluxon pump, " lens, " or fluxon " rectifier " because the applied electrical ac is transformed into a net dc motion of fluxons. Thermal fluctuations and the asymmetry of the ratchet channel walls induce this " diode "(More)
A significant challenge in toxicology is the 'too many chemicals' problem. Human beings and environmental species are exposed to tens of thousands of chemicals, only a small percentage of which have been tested thoroughly using standard in vivo test methods. This study reviews several approaches that are being developed to deal with this problem by the U.S.(More)
BACKGROUND With increasing knowledge about the potential mechanisms underlying cellular functions, it is becoming feasible to predict the response of biological systems to genetic and environmental perturbations. Due to the lack of homogeneity in living tissues it is difficult to estimate the physiological effect of chemicals, including potential toxicity.(More)
BACKGROUND Nuclear receptors (NR) are a superfamily of ligand-activated transcription factors that control a range of cellular processes. Persistent stimulation of some NR is a non-genotoxic mechanism of rodent liver cancer with unclear relevance to humans. Here we report on a systematic analysis of new in vitro human NR activity data on 309 environmental(More)
A panel of experts in physiologically based pharmacokinetic (PBPK) modeling and relevant quantitative methods was convened to describe and discuss model evaluation criteria, issues, and choices that arise in model application and computational tools for improving model quality for use in human health risk assessments (HHRAs). Although publication of a PBPK(More)
Any statistical model should be identifiable in order for estimates and tests using it to be meaningful. We consider statistical analysis of physiologically-based pharmacokinetic (PBPK) models in which parameters cannot be estimated precisely from available data, and discuss different types of identifiability that occur in PBPK models and give reasons why(More)
We previously integrated dosimetry and exposure with high-throughput screening (HTS) to enhance the utility of ToxCast HTS data by translating in vitro bioactivity concentrations to oral equivalent doses (OEDs) required to achieve these levels internally. These OEDs were compared against regulatory exposure estimates, providing an activity-to-exposure ratio(More)
BACKGROUND Computational exposure science represents a frontier of environmental science that is emerging and quickly evolving. OBJECTIVES In this commentary, we define this burgeoning discipline, describe a framework for implementation, and review some key ongoing research elements that are advancing the science with respect to exposure to chemicals in(More)