Learn More
Sea cucumbers possess a peculiar specialized defense system: the so-called Cuvierian tubules. The system is mobilized when the animal is mechanically stimulated, resulting in the discharge of a few white filaments, the tubules. Their great adhesivity, combined with their high tensile strength, allows Cuvierian tubules to entangle and immobilize potential(More)
Mussels attach to solid surfaces in the sea. Their adhesion must be rapid, strong, and tough, or else they will be dislodged and dashed to pieces by the next incoming wave. Given the dearth of synthetic adhesives for wet polar surfaces, much effort has been directed to characterizing and mimicking essential features of the adhesive chemistry practiced by(More)
Most organisms consist of a functionally adaptive assemblage of hard and soft tissues. Despite the obvious advantages of reinforcing soft protoplasm with a hard scaffold, such composites can lead to tremendous mechanical stresses where the two meet. Although little is known about how nature relieves these stresses, it is generally agreed that fundamental(More)
Variation in the adhesive protein gene sequences of Mytilus edulis, M. galloprovincialis, and M. trossulus collected in Delaware, Kamaishi (Japan), and Alaska, respectively, was analyzed by the polymerase chain reaction (PCR) using two sets of oligonucleotide primers. The first set, Me 13 and Me 14, was designed to amplify the repetitive region. The length(More)
Byssal threads provide marine mussels with the tenacity to remain sessile in habitats of high flow. Under uniaxial tension, byssal threads are typical of other biological and synthetic fibers in exhibiting an initial linear region followed by yield. They differ, however, in their capacity to recover or "self-heal" following yield. We have examined the(More)
  • J H Waite
  • 1999
Marine mussels (Mytilus) are experts at bonding to a variety of solid surfaces in a wet, saline and turbulent environment. Bonding is rapid, permanent, versatile and protein-based. In mussels, adhesive bonding takes the form of a byssus--a bundle of extracorporeal threads--each connected to living tissues of the animal at one end and secured by an adhesive(More)
Phragmatopoma californica is a marine polychaete that builds protective tubes by joining bits of shell and sand grains with a secreted proteinaceous cement. The cement forms a solid foam (closed cells) via covalent crosslinking, as revealed by electron and laser scanning confocal microscopy. The cement contains extractable calcium and magnesium, and(More)
Mussels owe their sessile way of life in the turbulent intertidal zone to adaptive adjustments in the process and biochemistry of permanent attachment. These have understandably attracted scientific interest given that the attachment is rapid, versatile, tough and not subverted by the presence of water. The adhesive pads of mussel byssus contain at least(More)
California mussels Mytilus californianus owe their tenacity to a holdfast known as the byssus, a fibrous extracellular structure that ends distally in flattened adhesive plaques. The "footprints" of freshly secreted plaques deposited onto glass coverslips were shown by matrix-assisted laser desorption ionization time of flight mass spectrometry to consist(More)
The byssal collagens of marine mussels are extracorporeal collagens that function in byssal threads under tension. Each byssal thread resembles a shock absorber in its mechanical design: it is strong and stiff at one end and pliably elastic at the other. Primary structures of three of these collagens (preCols), deduced from cDNAs, reveal signal peptide(More)