Learn More
Drosophila ISWI, a highly conserved member of the SWI2/SNF2 family of ATPases, is the catalytic subunit of three chromatin-remodeling complexes: NURF, CHRAC, and ACF. To clarify the biological functions of ISWI, we generated and characterized null and dominant-negative ISWI mutations. We found that ISWI mutations affect both cell viability and gene(More)
We have established, by means of a monoclonal antibody and a cDNA clone, that a desmosomal polypeptide of Mr 83,000 also occurs at the plaques of other types of adhering junctions, including the vinculin-actin-associated intercellular junctions, e.g., the zonula adhaerens of epithelial cells and the endothelial, lens, and Sertoli cell junctions. This is the(More)
The brahma (brm) gene is required for the activation of multiple homeotic genes in Drosophila. Loss-of-function brm mutations suppress mutations in Polycomb, a repressor of homeotic genes, and cause developmental defects similar to those arising from insufficient expression of the homeotic genes of the Antennapedia and Bithorax complexes. The brm gene(More)
We describe the isolation, characterization, and sequence of cDNA clones encoding one subunit of the complex of membrane glycoproteins that forms part of the transmembrane connection between the extracellular matrix and the cytoskeleton. The cDNA sequence encodes a polypeptide of 89 kd that has features strongly suggesting the presence of a large N-terminal(More)
Two genes known to control the determination of segmental identity in Drosophila melanogaster are polycomb and antennapedia. To identify additional genes involved in the determination of segmental identity, we have isolated dominant modifers (both suppressors and enhancers) of polycomb and/or antennapedia mutations. Sixty-four such modifier mutations have(More)
During most of Drosophila development the regulation of homeotic gene transcription is controlled by two groups of regulatory genes, the trithorax group of activators and the Polycomb group of repressors. brahma (brm), a member of the trithorax group, encodes a protein related to the yeast SWI2/SNF2 protein, a subunit of a protein complex that assists(More)
Sequence-specific DNA binding activators of gene transcription may be assisted by SWI2 (SNF2), which contains a DNA-dependent ATPase domain. We have isolated a human complementary DNA encoding a 205K nuclear protein, BRG1, that contains extensive homology to SWI2 and Drosophila brahma. We report here that a SWI2/BRG1 chimera with the DNA-dependent ATPase(More)
Imitation SWI (ISWI) and other ATP-dependent chromatin-remodeling factors play key roles in transcription and other processes by altering the structure and positioning of nucleosomes. Recent studies have also implicated ISWI in the regulation of higher-order chromatin structure, but its role in this process remains poorly understood. To clarify the role of(More)
To identify potential regulators of Hox gene expression in mice, we have screened for genes highly related to brahma (brm), an activator of homeotic gene expression in Drosophila. We have cloned a murine gene, brg1, which, like brm, encodes a member of the DEGH protein family, suggesting that brg1 may be a DNA-dependent ATPase or a helicase. brg1 also(More)
The brahma gene is required for activation of the homeotic genes of the Antennapedia and bithorax complexes in Drosophila. We have isolated and characterized 21 mutations in brahma. We show that both maternal and zygotic functions of brahma are required during embryogenesis. In addition, the severe abnormalities caused by loss of maternal brahma expression(More)