John W. Rumsey

Learn More
This paper describes a significant biotechnological advancement by creating a minimalist serum-free defined system to co-culture rat mammalian nerve and muscle cells in order to form functional neuromuscular junctions. To date, all the known in vitro nerve and muscle co-culture models use serum containing media; and while functional neuromuscular junctions(More)
Neuromuscular junction (NMJ) formation, occurring between motoneurons and skeletal muscle, is a complex multistep process involving a variety of signaling molecules and pathways. In vitro motoneuron-muscle co-cultures are powerful tools to study the role of different growth factors, hormones and cellular structures involved in NMJ formation. In this study,(More)
To date, the coculture of motoneurons (MNs) and skeletal muscle in a defined in vitro system has only been described in one study and that was between rat MNs and rat skeletal muscle. No in vitro studies have demonstrated human MN to rat muscle synapse formation, although numerous studies have attempted to implant human stem cells into rat models to(More)
The C2C12 cell line is frequently used as a model of skeletal muscle differentiation. In our serum-free defined culture system, differentiation of C2C12 cells into myotubes required surface-bound signals such as substrate-adsorbed vitronectin or laminin. On the basis of this substrate requirement of myotube formation, we developed a photolithography-based(More)
We are attempting to recreate a stretch reflex circuit on a patterned Bio-MEMS (bio-microelectromechanical systems) chip with deflecting micro-cantilevers. The first steps to recreate this system is to be able to grow individual components of the circuit (sensory neuron, motoneuron, skeletal muscle, and muscle spindle) on a patternable, synthetic substrate(More)
The use of defined in vitro systems to study the developmental and physiological characteristics of a variety of cell types is increasing, due in large part to their ease of integration with tissue engineering, regenerative medicine, and high-throughput screening applications. In this study, myotubes derived from fetal rat hind limbs were induced to develop(More)
While much is known about muscle spindle structure, innervation and function, relatively few factors have been identified that regulate intrafusal fiber differentiation and spindle development. Identification of these factors will be a crucial step in tissue engineering functional muscle systems. In this study, we investigated the role of the growth factor,(More)
The sensory circuit of the stretch reflex arc, composed of specialized intrafusal muscle fibers and type Ia proprioceptive sensory neurons, converts mechanical information regarding muscle length and stretch to electrical action potentials and relays them to the central nervous system. Utilizing a non-biological substrate, surface patterning(More)
One of the most significant interactions between Schwann cells and neurons is myelin sheath formation. Myelination is a vertebrate adaptation that enables rapid conduction of action potentials without a commensurate increase in axon diameter. In vitro neuronal systems provide a unique modality to study both factors influencing myelination and diseases(More)
This work describes the step-by-step development of a novel, serum-free, in vitro cell culture system resulting in the formation of robust, contracting, multinucleate myotubes from dissociated skeletal muscle cells obtained from the hind limbs of fetal rats. This defined system consisted of a serum-free medium formulation developed by the systematic(More)