Learn More
MOTIVATION The ability to detect regions of genetic alteration is of great importance in cancer research. These alterations can take the form of large chromosomal gains and losses as well as smaller amplifications and deletions. The detection of such regions allows researchers to identify genes involved in cancer progression, and to fully understand(More)
The identification of phenotypic associations in high-dimensional brain connectivity data represents the next frontier in the neuroimaging connectomics era. Exploration of brain-phenotype relationships remains limited by statistical approaches that are computationally intensive, depend on a priori hypotheses, or require stringent correction for multiple(More)
Missing data pose one of the greatest challenges in the rigorous evaluation of biomarkers. The limited availability of specimens with complete clinical annotation and quality biomaterial often leads to underpowered studies. Tissue microarray studies, for example, may be further handicapped by the loss of data points because of unevaluable staining, core(More)
The identification of phenotypic associations in high-dimensional brain connectivity data represents the next frontier in the neuroimaging connectomics era. Exploration of brain-phenotype relationships remains limited by statistical approaches that are computationally intensive, depend on a priori hypotheses, or require stringent correction for multiple(More)
  • 1