John W. Byers

Learn More
Effective engineering of the Internet is predicated upon a detailed understanding of issues such as the large-scale structure of its underlying physical topology, the manner in which it evolves over time, and the way in which its constituent components contribute to its overall function. Unfortunately, developing a deep understanding of these issues has(More)
In the emerging area of sensor-based systems, a significant challenge is to develop scalable, fault-tolerant methods to extract useful information from the data the sensors collect. An approach to this data management problem is the use of sensor database systems, exemplified by TinyDB and Cougar, which allow users to perform aggregation queries such as(More)
Recent empirical studies [6] have shown that Internet topologies exhibit power laws of the form <i>y</i> = <i>x</i> <sup>&alpha;</sup> for the following relationships: (P1) outdegree of node (domain or router) versus rank; (P2) number of nodes versus outdegree; (P3) number of node pairs within a neighborhood versus neighborhood size (in hops); and (P4)(More)
Effective engineering of the Internet is predicated upon a detailed understanding of issues such as the large-scale structure of its underlying physical topology, the manner in which it evolves over time, and the way in which its constituent components contribute to its overall function. Unfortunately, developing a deep understanding of these issues has(More)
We describe Fair Layered Increase/Decrease with Dynamic Layering (FLID-DL), a new multi-rate congestion control algorithm for layered multicast sessions. FLID-DL generalizes the receiver-driven layered congestion (RLC) control protocol introduced by Vicisano, Rizzo, and Crowcroft, ameliorating the problems associated with large IGMP leave latencies and(More)
Considerable attention has been focused on the properties of graphs derived from Internet measurements. Router-level topologies collected via traceroute-like methods have led some to conclude that the router graph of the Internet is well modeled as a power-law random graph. In such a graph, the degree distribution of nodes follows a distribution with a(More)
Distributed hash tables have recently become a useful building block for a variety of distributed applications. However, current schemes based upon consistent hashing require both considerable implementation complexity and substantial storage overhead to achieve desired load balancing goals. We argue in this paper that these goals can be achieved more(More)
The proliferation of applications that must reliably distribute large, rich content to a vast number of autonomous receivers motivates the design of new multicast and broadcast protocols. We describe an ideal, fully scalable protocol for these applications that we call a digital fountain. A digital fountain allows any number of heterogeneous receivers to(More)
Motivated by limitations in today’s host-centric IP network, recent studies have proposed clean-slate network architectures centered around alternate first-class principals, such as content, services, or users. However, much like the host-centric IP design, elevating one principal type above others hinders communication between other principals and inhibits(More)