Learn More
Protein synthesis in all cells begins with the ordered binding of the small ribosomal subunit to messenger RNA (mRNA) and transfer RNA (tRNA). In eukaryotes, translation initiation factor 3 (eIF3) is thought to play an essential role in this process by influencing mRNA and tRNA binding through indirect interactions on the backside of the 40S subunit. Here(More)
The eukaryotic initiation factor 3 (eIF3) plays an important role in translation initiation, acting as a docking site for several eIFs that assemble on the 40S ribosomal subunit. Here, we use mass spectrometry to probe the subunit interactions within the human eIF3 complex. Our results show that the 13-subunit complex can be maintained intact in the gas(More)
Eukaryotic initiation factor 3 (eIF3) is a 12-subunit protein complex that plays a central role in binding of initiator methionyl-tRNA and mRNA to the 40 S ribosomal subunit to form the 40 S initiation complex. The molecular mechanisms by which eIF3 exerts these functions are poorly understood. To learn more about the structure and function of eIF3 we have(More)
Protein synthesis in mammalian cells requires initiation factor eIF3, an approximately 800-kDa protein complex that plays a central role in binding of initiator methionyl-tRNA and mRNA to the 40 S ribosomal subunit to form the 48 S initiation complex. The eIF3 complex also prevents premature association of the 40 and 60 S ribosomal subunits and interacts(More)
The delivery of Met-tRNA(i) to the 40S ribosomal subunit is thought to occur by way of a ternary complex (TC) comprising eIF2, GTP and Met-tRNA(i). We have generated from purified human proteins a stable multifactor complex (MFC) comprising eIF1, eIF2, eIF3 and eIF5, similar to the MFC reported in yeast and plants. A human MFC free of the ribosome also is(More)
The gene for translation initiation factor IF1, infA, has been identified by using two synthetic oligonucleotides to screen a Charon 30 library of Escherichia coli DNA. A recombinant lambda phage, C1921, was purified from a plaque positive for both probes. A 2.8 kb BglII fragment and a 2.0 kb HindIII fragment isolated from C1921 were subcloned into the(More)
Translocation of peptidyl-tRNA and mRNA within the ribosome during protein synthesis is promoted by the elongation factor EF-G and by the hydrolysis of GTP. A new study reports that EF-G binds to ribosomes as an EF-G.GDP complex and that GTP is exchanged for GDP on the ribosome. Together with cryo-electron microscopy, this unexpected finding helps clarify(More)
The translation elongation factor eIF5A is conserved through evolution and is necessary to rescue the ribosome during translation elongation of polyproline-containing proteins. Although the site of eIF5A binding to the ribosome is known, no systematic analysis has been performed so far to determine the important residues on the surface of eIF5A required for(More)