John Totman

Learn More
AIMS Cardiovascular magnetic resonance (CMR) allows non-invasive phase contrast measurements of flow through planes transecting large vessels. However, some clinically valuable applications are highly sensitive to errors caused by small offsets of measured velocities if these are not adequately corrected, for example by the use of static tissue or static(More)
OBJECTIVE Positron emission tomography (PET) provides an accurate measurement of radiotracer concentration in vivo, but performance can be limited by subject motion which degrades spatial resolution and quantitative accuracy. This effect may become a limiting factor for PET studies in the body as PET scanner technology improves. In this work, we propose a(More)
PURPOSE Eddy current induced velocity offsets are of concern for accuracy in cardiovascular magnetic resonance (CMR) volume flow quantification. However, currently known theoretical aspects of eddy current behavior have not led to effective guidelines for the optimization of flow quantification sequences. This study is aimed at identifying correlations(More)
Automatic classification of neurological tissues is a first step to many structural analysis pipelines. Most computational approaches are designed to extract the best possible classification results out of MR data acquired with standard clinical protocols. We observe that the characteristics of the latter owe more to the historical circumstances under which(More)
  • 1