John T. Weber

Learn More
Cerebellar parallel fiber (PF)-Purkinje cell (PC) synapses can undergo postsynaptically expressed long-term depression (LTD) or long-term potentiation (LTP) depending on whether or not the climbing fiber (CF) input is coactivated during tetanization. Here, we show that modifications of the postsynaptic calcium load using the calcium chelator BAPTA or(More)
Climbing fiber (CF) activation evokes a large all-or-nothing electrical response in Purkinje cells (PCs), the complex spike. It has been suggested that the role of CFs (and thus complex spikes) is that of a "teacher" in simple learning paradigms such as associative eyeblink conditioning. An alternative hypothesis describes the olivocerebellar system as part(More)
Cell death and dysfunction following traumatic brain injury (TBI) consists of a primary phase, which causes immediate consequences to cells by direct mechanical disruption of the brain, and a secondary phase which consists of delayed events initiated at the time of insult. One of the major culprits that contributes to delayed neuronal damage and death after(More)
An interesting hypothesis in the study of neurotrauma is that repeated traumatic brain injury may result in cumulative damage to cells of the brain. However, post-injury sequelae are difficult to address at the cellular level in vivo. Therefore, it is necessary to complement these studies with experiments conducted in vitro. In this report, the effects of(More)
Purkinje cells (PCs) present a unique cellular profile in both the cerebellum and the brain. Because they represent the only output cell of the cerebellar cortex, they play a vital role in the normal function of the cerebellum. Interestingly, PCs are highly susceptible to a variety of pathological conditions that may involve glutamate-mediated(More)
Acute alcohol consumption causes deficits in motor coordination and gait, suggesting an involvement of cerebellar circuits, which play a role in the fine adjustment of movements and in motor learning. It has previously been shown that ethanol modulates inhibitory transmission in the cerebellum and affects synaptic transmission and plasticity at excitatory(More)
In recent years much has been learned about the molecular requirements for inducing long-term synaptic depression (LTD) in various brain regions. However, very little is known about the consequences of LTD induction for subsequent signaling events in postsynaptic neurons. We have addressed this issue by examining homosynaptic LTD at the cerebellar climbing(More)
In the central nervous system (CNS), the cytokine tumor necrosis factor-alpha (TNF alpha) is produced by both neurons and glial cells, participates in developmental modeling, and is involved in many pathophysiological conditions. There are activity-dependent expressions of TNF alpha as well as low levels of secretion in the resting state. In contrast to the(More)
Phenolic compounds are a large class of phytochemicals that are widespread in the plant kingdom and known to have antioxidant capacities. This study aimed to determine the antioxidant capacities as well as the content of total soluble phenolics, anthocyanins, tannins, and flavonoids in the fruits and leaves of blueberries and lingonberries growing in(More)
Selective 5HT1a agonist binding to membranes from rabbit cerebral cortex was concentration-dependent and saturable; the Kd was 1.1 nM and Bmax of 480 fmols/mg protein. Scatchard as well as Hill plots were linear; the Hill coefficient was 0.96, suggesting a single, non-interacting binding site. Agonist binding was inhibited in a concentration-dependent(More)