John T Le

Learn More
Recurrent seizures in animal models of early-onset epilepsy have been shown to produce deficits in spatial learning and memory. While neuronal loss does not appear to underlie these effects, dendritic spine loss has been shown to occur. In experiments reported here, seizures induced either by tetanus toxin or flurothyl during the second postnatal week were(More)
While infantile spasms is the most common catastrophic epilepsy of infancy and early-childhood, very little is known about the basic mechanisms responsible for this devastating disorder. In experiments reported here, spasms were induced in rats by the chronic infusion of TTX into the neocortex beginning on postnatal days 10-12. Studies of focal epilepsy(More)
Neuronal networks are thought to gradually adapt to altered neuronal activity over many hours and days. For instance, when activity is increased by suppressing synaptic inhibition, excitatory synaptic transmission is reduced. The underlying compensatory cellular and molecular mechanisms are thought to contribute in important ways to maintaining normal(More)
The effects recurring seizures have on the developing brain are an important area of debate because many forms of human epilepsy arise in early life when the central nervous system is undergoing dramatic developmental changes. To examine effects on glutamatergic synaptogenesis, epileptiform activity was induced by chronic treatment with GABAa receptor(More)
Abnormal high frequency oscillations (HFOs) in EEG recordings are thought to be reflections of mechanisms responsible for focal seizure generation in the temporal lobe and neocortex. HFOs have also been recorded in patients and animal models of infantile spasms. If HFOs are important contributors to infantile spasms then anticonvulsant drugs that suppress(More)
  • 1