John T. Elliott

Learn More
To study the toxicity of nanoparticles under relevant conditions, it is critical to disperse nanoparticles reproducibly in different agglomeration states in aqueous solutions compatible with cell-based assays. Here, we disperse gold, silver, cerium oxide, and positively-charged polystyrene nanoparticles in cell culture media, using the timing between mixing(More)
Vascular smooth muscle cells (vSMC) cultured on gels of fibrillar type I collagen or denatured collagen (gelatin) comprise a model system that has been widely used for studying the role of the extracellular matrix in vascular diseases such as hypertension, restenosis and athrosclerosis. Despite the wide use of this model system, there are several(More)
Many model systems and measurement tools have been engineered for observing and quantifying the effect of mechanics on cellular response. These have contributed greatly to our current knowledge of the molecular events by which mechanical cues affect cell biology. Cell responses to the mechanical properties of type 1 collagen gels are discussed, followed by(More)
BACKGROUND Cell size and shape have been implicated as potentiators of intracellular signaling events and as indicators of abnormal cell behavior. Automated microscopy and image analysis can provide quantitative information about the size and shape of cultured cells, but it requires that the edge of a cell be clearly identified. Generating adequate contrast(More)
Cells receive signals from the extracellular matrix through receptor-dependent interactions, but they are also influenced by the mechanical properties of the matrix. Although bulk properties of substrates have been shown to affect cell behavior, we show here that nanoscale properties of collagen fibrils also play a significant role in determining cell(More)
In anchorage dependent cells, myosin generated contractile forces affect events closely associated with adhesion such as the formation of stress fibers and focal adhesions, and temporally distal events such as entry of the cell into S-phase. As occurs in many signaling pathways, a phosphorylation reaction (in this case, phosphorylation of myosin light(More)
While it is well-appreciated that the extracellular matrix plays a critical role in influencing cell responses, well-defined and reproducible presentation of extracellular matrix proteins poses a challenge for in vitro experiments. Films of type 1 collagen fibrils assembled on alkanethiolate monolayers formed at gold-coated surfaces have been shown to(More)
Image cytometry has emerged as a valuable in vitro screening tool and advances in automated microscopy have made it possible to readily analyze large cellular populations of image data. The purpose of this paper is to illustrate the viability of using cell shape to test equality of cell populations based on image data. Shape space theory is reviewed, from(More)
Tenascin-C (TN-C) is an extracellular matrix (ECM) protein expressed within remodeling systemic and pulmonary arteries (PAs), where it supports vascular smooth muscle cell (SMC) proliferation. Previously, we showed that A10 SMCs cultivated on native type I collagen possess a spindle-shaped morphology and do not express TN-C, whereas those on denatured(More)
Cells within tissues derive mechanical anchorage and specific molecular signals from the insoluble extracellular matrix (ECM) that surrounds them. Understanding the role of different cues that extracellular matrices provide cells is critical for controlling and predicting cell response to scaffolding materials. Using an engineered extracellular matrix of(More)