Learn More
RATIONALE Prepulse inhibition (PPI) of the startle reflex occurs when brief, non-startling tactile, acoustic or visual stimuli are presented 20-500 ms before the startling stimulus. OBJECTIVE To review information about PPI-mediating brain stem circuits and transmitters, and their functions. RESULTS Midbrain systems are most critical for the fast relay(More)
The startle reflex is elicited by intense tactile, acoustic or vestibular stimuli. Fast mechanoreceptors in each modality can respond to skin or head displacement. In each modality, stimulation of cranial nerves or primary sensory nuclei evokes startle-like responses. The most sensitive sites in rats are found in the ventral spinal trigeminal pathway,(More)
The directly activated substrates for medial forebrain bundle (MFB) self-stimulation are primarily low threshold, myelinated axons with absolute refractory periods of 0.4 to 1.2 msec, conduction velocities of 1 to 8 m/sec and current-distance constants of 1000 to 3000 microA/mm2. When small electrode tips or high currents are used, however, a second(More)
Rats lever pressed for concurrent electrical stimulation of the lateral hypothalamus and ventral tegmentum. The pulse-pair stimulation technique was used, with the first pulse of each pair applied to one electrode and the second to the other electrode; the intrapair interval was varied. The effectiveness of stimulation, measured behaviorally, increased(More)
Quantitative properties of the neural system mediating the rewarding and priming effects of medial forebrain bundle (MFB) stimulation in the rat have been determined by experiments that trade one parameter of the electrical stimulus against another. The first-order neurons in this substrate are for the most part long, thin, myelinated axons, coursing in the(More)
Rats were implanted with stimulating electrodes in the lateral hypothalamus, and cannulae for chemical injections in the ventral tegmentum. Injections of atropine, a muscarinic antagonist, increased thresholds for self-stimulation in a dose-dependent fashion, without slowing bar pressing rates. Thresholds increased less for a self-stimulation site(More)
Increasing evidence indicates that epigenetic changes regulate cell genesis. Here, we ask about neural precursors, focusing on CREB binding protein (CBP), a histone acetyltransferase that, when haploinsufficient, causes Rubinstein-Taybi syndrome (RTS), a genetic disorder with cognitive dysfunction. We show that neonatal cbp(+/-) mice are behaviorally(More)
The cholinergic cells of the tegmental pedunculopontine nucleus monosynaptically excite dopaminergic neurons of the substantia nigra. In vivo electrochemical methods were used to monitor dorsal striatal dopamine efflux in awake rats following intraperitoneal scopolamine injections and following the direct application of scopolamine to the tegmental(More)
  • J S Yeomans
  • 1995
Cholinergic neurons of the pedunculopontine nucleus (Ch5) and laterodorsal tegmental nucleus (Ch6) monosynaptically activate dopamine neurons of the substantia nigra, zona compacta (A9), and ventral tegmental area (A10) via muscarinic and nicotinic receptors. Ch5 cells and Ch6 cells are inhibited by local injections of muscarinic agonists, suggesting the(More)