Learn More
An experiment was conducted to investigate microbial responses to metal inputs in five soils with varying clay and organic contents; one soil had also a higher pH. These soils were treated with a low metal, sewage sludge control or with this sludge contaminated to achieve Cu=112, Ni=58 and Zn=220 mg kg(-1) in medium and Cu=182, Ni=98 and Zn=325 mg kg(-1) in(More)
This review focuses on treatment-based remediation of soils and the acquisition of data to support and monitor this remediation. Only in the last two decades has significant progress been made in regulating for soil pollution, with a parallel development of methodologies for soil assessment and remediation. However, soil complexity remains a problem for(More)
Leek (Allium ameloprasum) was grown in pot trials in two clay loams of contrasting organic contents, with and without indigenous mycorrhizal propagules. Sewage sludges containing varying levels of Cd, Cu and Zn were added. Extractable soil metals, plant growth, major nutrient content and accumulation of metals, and soil microbial indices were investigated.(More)
This study explores the utility of Fourier transform infra-red spectroscopy (FT-IR) as a metabolomic tool to detect changes in water-extractable chemical profile resulting from horizontal gene transfer (HGT) events in artificial soil slurries. A GFP–Km (Green fluorescent protein–kanamycin) cassette tagged HGT recipient Acinetobacter strain ADPWH67 with the(More)
The impacts of shock loadings of copper and zinc (up to 50 mg l(-1)) on the treatment efficiency of a mesoscale-fixed microbial film landfill leachate treatment system were investigated. Treatment inhibition and recovery were monitored in sequence over two 36 h experimental runs. The fate of added metals was also investigated. Copper, and to a lesser extent(More)
This study aimed to evaluate metabolic fingerprinting by Fourier transform infrared (FT-IR) spectroscopy as a technique for investigating microbial communities and their activities in soil. FT-IR spectra from earthworm casts, and other 'biosamples', were compared using multivariate cluster analyses. The work formed part of a wider study to quantify the risk(More)
UV-B radiation and elevated CO₂ may impact rhizosphere processes through altered below-ground plant resource allocation and root exudation, changes that may have implications for nutrient acquisition. As nutrients limit plant growth in many habitats, their supply may dictate plant response under elevated CO₂. This study investigated UV-B exposure and(More)
We appraise the present geographical extent and inherent knowledge limits, following two decades of research on elevated CO2 responses in plant communities, and ask whether such research has answered the key question in quantifying the limits of compensatory CO2 uptake in the major biomes. Our synthesis of all ecosystem-scale (between 10 m(2) and 3000 m(2)(More)
Biological ammoniacal-nitrogen (NH(4)(+)-N) and organic carbon (TOC) treatment was investigated in replicated mesoscale attached microbial film trickling filters, treating strong and weak strength landfill leachates in batch mode at temperatures of 3, 10, 15 and 30 degrees C. Comparing leachates, rates of NH(4)(+)-N reduction (0.126-0.159 g m(-2) d(-1))(More)
We investigated whether exposure to UV-B results in biochemical changes in leaf litter, affecting growth rates of earth-worms feeding on this litter and cast chemistry. Seedlings of Betula pubescens L. were grown under zero and ambient UV-B (at 52 °N) regimes under optimal conditions. Following three months exposure, plants were allowed to senesce and leaf(More)