John Schultz

Learn More
One of the tasks of a forensic anthropologist is to sort human bone fragments from other materials, which can be difficult when dealing with highly fragmented and taphonomically modified material. The purpose of this research is to develop a method using handheld X-ray fluorescence (HHXRF) spectrometry to distinguish human and nonhuman bone/teeth from(More)
BACKGROUND AND PURPOSE Direct thrombin inhibitors, including argatroban, represent an anticoagulant class distinct from heparins. We investigated the safety of 2 levels of argatroban anticoagulation in acute ischemic stroke. METHODS This multicenter, randomized, double-blinded, placebo-controlled study included 171 patients with acute (< or =12 hours from(More)
Contemporary commercial cremation is a reductive taphonomic process that represents one of the most extreme examples of postmortem human alteration of bone. The thorough reduction and fragmentation of cremated human remains often leaves little biological evidence of diagnostic value. Instead, non-osseous artifacts often provide the best evidence of the(More)
Forensic anthropologists are generally able to identify skeletal materials (bone and tooth) using gross anatomical features; however, highly fragmented or taphonomically altered materials may be problematic to identify. Several chemical analysis techniques have been shown to be reliable laboratory methods that can be used to determine if questionable(More)
Pulse oximetry is a widely used, noninvasive instrument for monitoring oxygen saturation. Its use, however, is limited in the setting of dyshemoglobinemias. We report a case of hemoglobin Rothschild in an Asian patient diagnosed as a result of routine pulse oximetry. This case reiterates the limitations of pulse oximetry in patients with dyshemoglobinemias,(More)
Ground-penetrating radar (GPR) was used to monitor 12 pig burials in Florida, each of which contained a large pig cadaver. Six of the cadavers were buried in sand at a depth of 0.50-0.60 m, and the other six were buried at a depth of 1.00-1.10 m and were in contact with the upper surface of a clay horizon. Control excavations with no pig internment were(More)
Ground-penetrating radar (GPR) was used to monitor 12 pig burials in Florida, each of which contained a small pig cadaver. Six of the cadavers were buried in sand at a depth of 0.50-0.60 m, and the other six were buried in sand at a depth of 1.00-1.10 m to represent deep and shallow burials that are generally encountered in forensic scenarios. Four control(More)
Forensic personnel must deal with numerous challenges when searching for submerged objects. While traditional water search methods have generally involved using dive teams, remotely operated vehicles (ROVs), and water scent dogs for cases involving submerged objects and bodies, law enforcement is increasingly integrating multiple methods that include(More)
Incorporating geophysical technologies into forensic investigations has become a growing practice. Oftentimes, forensic professionals rely on basic metal detectors to assist their efforts during metallic weapons searches. This has created a need for controlled research in the area of weapons searches, specifically to formulate guidelines for geophysical(More)
Forensic personnel may face a daunting task when searching for buried weapons at crime scenes or potential disposal sites. In particular, it is common to search for a small firearm that was discarded or buried by a perpetrator. When performing forensic searches, it is recommended to first use non-invasive methods such as geophysical instruments to minimize(More)