Learn More
Numerous energy harvesting wireless devices that will serve as building blocks for the Internet of Things (IoT) are currently under development. However, there is still only limited understanding of the properties of various energy sources and their impact on energy harvesting adaptive algorithms. Hence, we focus on <i>characterizing the kinetic (motion)(More)
—This paper focuses on a new type of wireless devices in the domain between RFIDs and sensor networks – Energy Harvesting Active Networked Tags (EnHANTs). Future EnHANTs will be small, flexible, and self-powered devices that can be attached to objects that are traditionally not networked (e.g., books, toys, clothing), thereby providing the infrastructure(More)
This article focuses on a new type of wireless devices in the domain between RFIDs and sensor networks&#8212;Energy-Harvesting Active Networked Tags (EnHANTs). Future EnHANTs will be small, flexible, and self-powered devices that can be attached to objects that are traditionally not networked (e.g., books, furniture, toys, produce, and clothing). Therefore,(More)
Energy Harvesting Active Networked Tags (EnHANTs) are a new class of devices in the domain between RFIDs and sensor networks. EnHANTs will be small, flexible, and energetically self-reliant. Their development is enabled by advances in ultra-low-power ultra-wideband (UWB) communications and in organic semiconductor-based energy harvesting materials. In this(More)
<i>Energy Harvesting Active Networked Tags (EnHANTs)</i> will be a new class of devices in the domain between RFIDs and sensor networks. Small, flexible, and energetically self-reliant, EnHANTs will be attached to objects that are traditionally not networked, such as books, furniture, toys, produce, and clothing. More information about the EnHANTs project(More)
—Characterizations of environmental energy availability and properties provide important insights for designing energy harvesting nodes and developing energy harvesting adaptive systems and algorithms. Previous characterizations of light energy availability provided baseline estimates of the total available energy that could be harvested by a crystalline(More)
The modern computing landscape increasingly requires a range of skills to successfully integrate complex systems. Project-based learning is used to help students build professional skills. However, it is typically applied to small teams and small efforts. In this paper, we describe our experience in engaging a large number of students in research projects(More)
Many interactive systems use "conventional" silicon- based sensors and electronics that limit their functionality and scalability. Organic, amorphous inorganic, and other "unconventional" electronics are ideal for applications that require mechanical flexibility or large-area sensing. In this studio participants will use simple control electronics and a(More)