John S. Tsang

Learn More
MicroRNAs (miRNAs) are regulatory molecules that participate in diverse biological processes in animals and plants. While thousands of mammalian genes are potentially targeted by miRNAs, the functions of miRNAs in the context of gene networks are not well understood. Specifically, it is unknown whether miRNA-containing networks have recurrent circuit(More)
MicroRNAs (miRNAs) are short, highly conserved noncoding RNA molecules that repress gene expression in a sequence-dependent manner. We performed single-cell measurements using quantitative fluorescence microscopy and flow cytometry to monitor a target gene's protein expression in the presence and absence of regulation by miRNA. We find that although the(More)
The most important product of the sequencing of a genome is a complete, accurate catalogue of genes and their products, primarily messenger RNA transcripts and their cognate proteins. Such a catalogue cannot be constructed by computational annotation alone; it requires experimental validation on a genome scale. Using 'exon' and 'tiling' arrays fabricated by(More)
MicroRNAs are emerging as important regulators of diverse biological processes and pathologies in animals and plants. Though hundreds of human microRNAs are known, only a few have known functions. Here, we predict human microRNA functions by using a new method that systematically assesses the statistical enrichment of several microRNA-targeting signatures(More)
Supplementary Figure 1 Data processing. (a), Each cell’s raw eYFP and mCherry intensities, either from fluorescence microscopy (not shown) or flow cytometry (shown here), are plotted. (b), Then the background, autofluorescent levels of eYFP and mCherry are subtracted. The background-corrected correlation data are then binned according to eYFP levels, and(More)
Networks of interacting genes are central to a cell’s ability to sense and process information. Such networks are seldom comprised of simple linear cascades; feedback loops are ubiquitous and are implicated in processes such as cellular differentiation, circadian rhythm, and cell cycle control. Noise, or stochastic fluctuation in network components and the(More)
Networks of interacting genes are central to a cell’s ability to sense and process information. Such networks are seldom comprised of simple linear cascades; feedback loops are ubiquitous and are implicated in processes such as cellular differentiation, circadian rhythm, and cell cycle control. Noise, or stochastic fluctuation in network components and the(More)
  • 1