Learn More
Malaria caused by Plasmodium falciparum is a disease that is responsible for 880,000 deaths per year worldwide. Vaccine development has proved difficult and resistance has emerged for most antimalarial drugs. To discover new antimalarial chemotypes, we have used a phenotypic forward chemical genetic approach to assay 309,474 chemicals. Here we disclose(More)
The ATP-binding cassette transporter A1 (ABCA1) is a major regulator of peripheral cholesterol efflux and plasma high density lipoprotein metabolism. In adult rat brain we found high expression of ABCA1 in neurons in the hypothalamus, thalamus, amygdala, cholinergic basal forebrain, and hippocampus. Large neurons of the cholinergic nucleus basalis together(More)
Resistance to antineoplastic agents is the major obstacle to curative therapy of cancer. Tumor cell lines with acquired resistance to the antineoplastic agent cis-diamminedichloroplatinum(II) overexpressed metallothionein and demonstrated cross-resistance to alkylating agents such as chlorambucil and melphalan. Human carcinoma cells that maintained high(More)
The dual-specificity phosphatase 6 (Dusp6) functions as a feedback regulator of fibroblast growth factor (FGF) signaling to limit the activity of extracellular signal-regulated kinases (ERKs) 1 and 2. We have identified a small-molecule inhibitor of Dusp6-(E)-2-benzylidene-3-(cyclohexylamino)-2,3-dihydro-1H-inden-1-one (BCI)-using a transgenic zebrafish(More)
BACKGROUND Protein kinase D (PKD) has been implicated in a wide range of cellular processes and pathological conditions including cancer. However, targeting PKD therapeutically and dissecting PKD-mediated cellular responses remains difficult due to lack of a potent and selective inhibitor. Previously, we identified a novel pan-PKD inhibitor, CID755673, with(More)
Official version: The online version of Drug Metabolism and Disposition contains all of the information and material contained in the print version plus additional material that may not appear in print such as videos and large data sets. The online version may be more current than the print version. Where noted, the online version has been corrected in(More)
Small molecules provide powerful tools to interrogate biological pathways but many important pathway participants remain refractory to inhibitors. For example, Cdc25 dual-specificity phosphatases regulate mammalian cell cycle progression and are implicated in oncogenesis, but potent and selective inhibitors are lacking for this enzyme class. Thus, we(More)
The development of preclinical models amenable to live animal bioactive compound screening is an attractive approach to discovering effective pharmacological therapies for disorders caused by misfolded and aggregation-prone proteins. In general, however, live animal drug screening is labor and resource intensive, and has been hampered by the lack of robust(More)
Ptp4a3 (commonly known as PRL-3) is an enigmatic member of the Ptp4a family of prenylated protein tyrosine phosphatases that are highly expressed in many human cancers. Despite strong correlations with tumor metastasis and poor patient prognosis, there is very limited understanding of this gene family's role in malignancy. Therefore, we created a(More)
The development of preclinical models amenable to live animal bioactive compound screening is an attractive approach to discovering effective pharmacological therapies for disorders caused by misfolded and aggregation-prone proteins. In general, however, live animal drug screening is labor and resource intensive, and has been hampered by the lack of robust(More)