Learn More
Malaria caused by Plasmodium falciparum is a disease that is responsible for 880,000 deaths per year worldwide. Vaccine development has proved difficult and resistance has emerged for most antimalarial drugs. To discover new antimalarial chemotypes, we have used a phenotypic forward chemical genetic approach to assay 309,474 chemicals. Here we disclose(More)
microRNAs (miRNA) are small noncoding RNAs that participate in diverse biological processes by suppressing target gene expression. Altered expression of miR-21 has been reported in cancer. To gain insights into its potential role in tumorigenesis, we generated miR-21 knockout colon cancer cells through gene targeting. Unbiased microarray analysis combined(More)
Phosphatases of regenerating liver (PRL) constitute a subfamily of the protein tyrosine phosphatases that are implicated in oncogenic and metastatic phenotypes. In this study, we evaluated the role of PRL-1 in cell proliferation and metastatic processes in human lung cancer cells. We stably transfected human A549 lung cancer cells with several short hairpin(More)
The ATP-binding cassette transporter A1 (ABCA1) is a major regulator of peripheral cholesterol efflux and plasma high density lipoprotein metabolism. In adult rat brain we found high expression of ABCA1 in neurons in the hypothalamus, thalamus, amygdala, cholinergic basal forebrain, and hippocampus. Large neurons of the cholinergic nucleus basalis together(More)
The cytotoxicities of a number of antineoplastic agents to oxygenated and hypoxic EMT6 mouse mammary tumor cells in culture were examined. Based on the relative sensitivities of cells under aerobic and hypoxic conditions, drugs were placed into three categories. Drugs that were preferentially toxic to cells under oxygenated conditions were classified as(More)
Resistance to antineoplastic agents is the major obstacle to curative therapy of cancer. Tumor cell lines with acquired resistance to the antineoplastic agent cis-diamminedichloroplatinum(II) overexpressed metallothionein and demonstrated cross-resistance to alkylating agents such as chlorambucil and melphalan. Human carcinoma cells that maintained high(More)
The dual-specificity phosphatase 6 (Dusp6) functions as a feedback regulator of fibroblast growth factor (FGF) signaling to limit the activity of extracellular signal-regulated kinases (ERKs) 1 and 2. We have identified a small-molecule inhibitor of Dusp6-(E)-2-benzylidene-3-(cyclohexylamino)-2,3-dihydro-1H-inden-1-one (BCI)-using a transgenic zebrafish(More)
Small molecules provide powerful tools to interrogate biological pathways but many important pathway participants remain refractory to inhibitors. For example, Cdc25 dual-specificity phosphatases regulate mammalian cell cycle progression and are implicated in oncogenesis, but potent and selective inhibitors are lacking for this enzyme class. Thus, we(More)