Learn More
Knowledge of the electrical conductivity properties of excitable tissues is essential for relating the electromagnetic fields generated by the tissue to the underlying electrophysiological currents. Efforts to characterize these endogenous currents from measurements of the associated electromagnetic fields would significantly benefit from the ability to(More)
The influence of gray and white matter tissue anisotropy on the human electroencephalogram (EEG) and magnetoencephalogram (MEG) was examined with a high resolution finite element model of the head of an adult male subject. The conductivity tensor data for gray and white matter were estimated from magnetic resonance diffusion tensor imaging. Simulations were(More)
Recently, we described a Bayesian inference approach to the MEG/EEG inverse problem that used numerical techniques to estimate the full posterior probability distributions of likely solutions upon which all inferences were based [Schmidt, D.M., George, J.S., Wood, C.C., 1999. Bayesian inference applied to the electromagnetic inverse problem. Human Brain(More)
Integrated analyses of human anatomical and functional measurements offer a powerful paradigm for human brain mapping. Magnetoencephalography (MEG) and EEG provide excellent temporal resolution of neural population dynamics as well as capabilities for source localization. Anatomical magnetic resonance imaging (MRI) provides excellent spatial resolution of(More)
We present a new approach to the electromagnetic inverse problem that explicitly addresses the ambiguity associated with its ill-posed character. Rather than calculating a single "best" solution according to some criterion, our approach produces a large number of likely solutions that both fit the data and any prior information that is used. Whereas the(More)
High-frequency oscillatory potentials (HFOPs) have been recorded from ganglion cells in cat, rabbit, frog, and mudpuppy retina and in electroretinograms (ERGs) from humans and other primates. However, the origin of HFOPs is unknown. Based on patterns of tracer coupling, we hypothesized that HFOPs could be generated, in part, by negative feedback from(More)
Editorial Recently-issued NIH policy statement and implementation guidelines (National Institutes of Health, 2003) promote the sharing of research data. While urging that " all data should be considered for data sharing " and " data should be made as widely and freely available as possible " the current policy requires only high-direct-cost (> US(More)
We have built an NMR system that employs a superconducting quantum interference device (SQUID) detector and operates in measurement fields of 2-25 microT. The system uses a pre-polarizing field from 4 to 30 mT generated by simple room-temperature wire-wound coils that are turned off during measurements. The instrument has an open geometry with samples(More)
Collecting continuous video together with multichannel electrophysiological data and other experimental modalities requires high bandwidth and storage capacities, as well as accurate synchronization to detect correlations between different recorded events. Often, experiments are highly complex, with many variables requiring immediate analysis and feedback(More)