Learn More
Invertase (INV) hydrolyzes sucrose into glucose and fructose, thereby playing key roles in primary metabolism and plant development. Based on their pH optima and sub-cellular locations, INVs are categorized into cell wall, cytoplasmic, and vacuolar subgroups, abbreviated as CWIN, CIN, and VIN, respectively. The broad importance and implications of INVs in(More)
An analysis of major U.S. crops shows that there is a large genetic potential for yield that is unrealized because of the need for better adaptation of the plants to the environments in which they are grown. Evidence from native populations suggests that high productivity can occur in these environments and that opportunities for improving production in(More)
Plant reproduction is sensitive to water deficits, especially during the early phases when development may cease irreversibly even though the parent remains alive. Grain numbers decrease because of several developmental changes, especially ovary abortion in maize (Zea mays L.) or pollen sterility in small grains. In maize, the water deficits inhibit(More)
After reproduction is initiated in plants, subsequent reproductive development is sometimes interrupted, which decreases the final number of seeds and fruits. We subjected maize (Zea mays L.) to low water potentials (psi(w)) that frequently cause this kind of failure. We observed metabolite pools and enzyme activities in the developing ovaries while we(More)
BACKGROUND AND AIMS Ovary abortion can occur in maize (Zea mays) if water deficits lower the water potential (psiw) sufficiently to inhibit photosynthesis around the time of pollination. The abortion decreases kernel number. The present work explored the activity of ovary acid invertases and their genes, together with other genes for sucrose-processing(More)
BACKGROUND AND AIMS New wall deposition usually accompanies plant growth. External osmotica inhibit both processes but wall precursors continue to be synthesized, and exocytosis follows. Consequently, the osmotica appear to act outside of the plasma membrane. Because this implies an action of turgor pressure (P) on the periplasm by unknown mechanisms, the(More)
Rapid changes in turgor pressure (P:) and temperature (T:) are giving new information about the mechanisms of plant growth. In the present work, single internode cells of the large-celled alga Chara corallina were used as a model for plant growth. P was changed without altering the chemical environment of the wall while observing growth without elastic(More)
We report here the cloning and sequence analysis of cDNAs for a pair of closely related proteins from soybean (Glycine max [L.] Merr. cv. Williams 82) stems. Both proteins are abundant in soluble extracts of seedling stems but not of roots. One of these proteins (M r=28 kDa) is also foundd in the cell wall fraction of stems and actumulates there when(More)
Leaf water potentials were measured at various rates of water absorption in whole plants and detached leaves of well-watered Helianthus annuus L. The experiments were conducted in the steady state, where changes in leaf hydration did not affect the measurements but both the transpiration and growth components of absorption could be observed. Calculations of(More)
BACKGROUND AND AIMS Plant growth involves pressure-driven cell enlargement generally accompanied by deposition of new cell wall. New polysaccharides are secreted by the plasma membrane but their subsequent entry into the wall is obscure. Therefore, polysaccharides and gold colloids of various sizes were presented to the inner wall face as though they were(More)