Learn More
We have developed a two-compartment, eight-variable model of a CA3 pyramidal cell as a reduction of a complex 19-compartment cable model [Traub et al, 1991]. Our reduced model segregates the fast currents for sodium spiking into a proximal, soma-like, compartment and the slower calcium and calcium-mediated currents into a dendrite-like compartment. In each(More)
When a stimulus supports two distinct interpretations, perception alternates in an irregular manner between them. What causes the bistable perceptual switches remains an open question. Most existing models assume that switches arise from a slow fatiguing process, such as adaptation or synaptic depression. We develop a new, attractor-based framework in which(More)
We study the dynamics of a pair of intrinsically oscillating leaky integrate-and-fire neurons (identical and noise-free) connected by combinations of electrical and inhibitory coupling. We use the theory of weakly coupled oscillators to examine how synchronization patterns are influenced by cellular properties (intrinsic frequency and the strength of(More)
Neurons in the medial superior olive process sound-localization cues via binaural coincidence detection, in which excitatory synaptic inputs from each ear are segregated onto different branches of a bipolar dendritic structure and summed at the soma and axon with submillisecond time resolution. Although synaptic timing and dynamics critically shape this(More)
Models implementing neuronal competition by reciprocally inhibitory populations are widely used to characterize bistable phenomena such as binocular rivalry. We find common dynamical behavior in several models of this general type, which differ in their architecture in the form of their gain functions, and in how they implement the slow process that(More)
Perceptual bistability occurs when a physical stimulus gives rise to two distinct interpretations that alternate irregularly. Noise and adaptation processes are two possible mechanisms for switching in neuronal competition models that describe the alternating behaviors. Either of these processes, if strong enough, could alone cause the alternations in(More)
We performed a systematic analysis of phase locking in pairs of electrically coupled neocortical fast-spiking (FS) and low-threshold-spiking (LTS) interneurons and in a conductance-based model of a pair of FS cells. Phase-response curves (PRCs) were obtained for real interneurons and the model cells. We used PRCs and the theory of weakly coupled oscillators(More)
Various nonlinear regenerative responses, including plateau potentials and bistable repetitive firing modes, have been observed in motoneurons under certain conditions. Our simulation results support the hypothesis that these responses are due to plateau-generating currents in the dendrites, consistent with a major role for a noninactivating calcium L-type(More)