Learn More
The magnitude of hydraulic redistribution of soil water by roots and its impact on soil water balance were estimated by monitoring time courses of soil water status at multiple depths and root sap flow under drought conditions in a dry ponderosa pine (Pinus ponderosa Dougl. ex Laws) ecosystem and in a moist Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco)(More)
Water movement in upland humid watersheds from the soil surface to the stream is often described using the concept of translatory flow 1,2 , which assumes that water entering the soil as precipitation displaces the water that was present previously, pushing it deeper into the soil and eventually into the stream 2. Within this framework, water at any soil(More)
The volume and complexity of their vascular systems make the dynamics of long-distance water transport in large trees difficult to study. We used heat and deuterated water (D2)) as tracers to characterize whole-tree water transport and storage properties in individual trees belonging to the coniferous species Pseudotsuga menziesii (Mirb.) Franco and Tsuga(More)
Although hydraulic redistribution of soil water (HR) by roots is a widespread phenomenon, the processes governing spatial and temporal patterns of HR are not well understood. We incorporated soil/plant biophysical properties into a simple model based on Darcy's law to predict seasonal trajectories of HR. We investigated the spatial and temporal variability(More)
• Carbon sequestration has focused renewed interest in understanding how forest management affects forest carbon gain over timescales of decades, and yet details of the physiological mechanisms over decades are often lacking for understanding long-term growth responses to management. • Here, we examined tree-ring growth patterns and stable isotopes of(More)
Rising atmospheric [CO2 ], ca , is expected to affect stomatal regulation of leaf gas-exchange of woody plants, thus influencing energy fluxes as well as carbon (C), water, and nutrient cycling of forests. Researchers have proposed various strategies for stomatal regulation of leaf gas-exchange that include maintaining a constant leaf internal [CO2 ], ci ,(More)
The inter-relationships among δ(13)C and δ(18)O in tree ring cellulose and ring width have the potential to illuminate long-term physiological and environmental information in forest stands that have not been monitored. We examine how within-stand competition and environmental gradients affect ring widths and the stable isotopes of cellulose. We utilize a(More)
Although tree- and stand-level estimates of forest water use are increasingly common, relatively little is known about partitioning of soil water resources among co-occurring tree species. We studied seasonal courses of soil water utilization in a 450-year-old Pseudotsuga menziesii (Mirb.) Franco-Tsuga heterophylla (Raf.) Sarg. forest in southwestern(More)
Tree bole volumes of 89 Scots pine (Pinus sylvestris L.), 96 Brutian pine (Pinus brutia Ten.), 107 Cilicica fir (Abies cilicica Carr.) and 67 Cedar of Lebanon (Cedrus libani A. Rich.) trees were estimated using Artificial Neural Network (ANN) models. Neural networks offer a number of advantages including the ability to implicitly detect complex nonlinear(More)
The TRPV1 receptor is known to play a role in nociceptive transmission in multiple organ systems, usually in response to the pain of inflammation. TRPV1 antagonism has so far shown limited benefit in antinociception. Capsaicin, a TRPV1 agonist, has been shown to induce a refractory period in the nerve terminal expressing TRPV1 and even, in sufficient(More)