Learn More
The opioid receptors involved in the supraspinal and spinal actions of [D-Pen2, D-Pen5]enkephalin (DPDPE) for production and/or modulation of analgesia were investigated in two thermal analgesic tests, the mouse warm water (55 degrees C) tail-withdrawal assay and the radiant heat tail-flick test. Two approaches were used at supraspinal and spinal sites:(More)
Three agonists with the highest degree of selectivity available for mu ([D-Ala2,NMePhe4,Gly-ol]enkephalin, DAGO), delta ([ D-Pen2,D-Pen5]enkephalin, DPDPE) and kappa (U-50,488H, U50) opioid receptors were compared for their activity in inhibiting acetic acid-induced writhing in mice. Additionally, three reference agonists for mu (morphine), delta ([(More)
Pardaxin is a membrane-lysing peptide originally isolated from the fish Pardachirus marmoratus. The effect of the carboxy-amide of pardaxin (P1a) on bilayers of varying composition was studied using (15)N and (31)P solid-state NMR of mechanically aligned samples and differential scanning calorimetry (DSC). (15)N NMR spectroscopy of [(15)N-Leu(19)]P1a found(More)
The 987-base-pair coding region of the tdc gene of Escherichia coli K-12 encoding biodegradative threonine dehydratase [Tdc; L-threonine hydro-lyase (deaminating), EC], previously cloned in this laboratory, was sequenced. The deduced polypeptide consists of 329 amino acid residues with a calculated Mr of 35,238. Although the purified enzyme was(More)
The objective of this study was to describe, quantitate and compare naloxone-induced abstinence syndromes in rats infused centrally (Sylvian aqueduct) with agonists that are currently the most selective for mu [( D-Ala2, MePhe4, Gly-ol5]enkephalin), delta [( D-Pen2, D-Pen5]enkephalin) and kappa (3,4-dichloro-N-methyl-N-[2-(1-pyrrolidinyl)(More)
Regulators of G-protein signaling (RGS) proteins form a multifunctional signaling family. A key role of RGS proteins is binding to the G-protein Galpha-subunit and acting as GTPase-activating proteins (GAPs), thereby rapidly terminating G protein-coupled receptor (GPCR) signaling. Using the published RGS4-Gialpha1 X-ray structure we have designed and(More)
Structural features influencing opioid activity of enkephalin analogs were investigated through the synthesis and evaluation of opioid receptor binding affinities of a series of cyclic dithioether-containing analogs and structurally related linear analogs of the cyclic, disulfide-containing peptides, [D-Pen2, D-Pen5]enkephalin and [D-Pen2,(More)
Tetrapeptides of primary sequence Tyr-X-Phe-YNH2, where X is D-Cys or D-Pen (penicillamine) and where Y is D-Pen or L-Pen, were prepared and were cyclized via the side chain sulfurs of residues 2 and 4 to disulfide or dithioether-containing analogs. These peptides are related to previously reported penicillamine-containing pentapeptide enkephalin analogs(More)
One of the principal roles of the multifunctional regulator of G-protein signaling (RGS) proteins is to terminate G-protein-coupled receptor (GPCR) signaling by binding to the G-protein Galpha subunit, thus acting as GTPase-activating proteins (GAPs). In principle, then, selective inhibitors of this GAP function would have potential as therapeutic agents,(More)
The in vitro pharmacological properties and conformational features of analogs of the delta opioid receptor selective tetrapeptide Tyr-c[D-Cys-Phe-D-Pen]OH (JOM-13) in which the Phe3 residue was replaced by each of the four stereoisomers of beta-methylphenylalanine (beta-MePhe) were investigated. Both analogs in which the alpha carbon of the Phe3(More)