Learn More
One of the major tenets of the modern synthesis is that genetic differentiation among subpopulations is translated over time into genetic differentiation among species. Phylogeographic exploration is therefore essential to the study of speciation because it can reveal the presence of subpopulations that may go on to become species or that may already(More)
Estimation of diversification rates in evolutionary radiations requires a complete accounting of cryptic species diversity. The rapidly evolving songs of acoustically signaling insects make them good model organisms for such studies. This paper examines the timing of diversification of a large (30 taxon) group of New Zealand cicadas (genus Kikihia Dugdale).(More)
Acoustic mate-attracting signals of related sympatric, synchronic species are always distinguishable, but those of related allopatric species sometimes are not, thus suggesting that such signals may evolve to "reinforce" premating species isolation when similar species become sympatric. This hypothesis predicts divergences restricted to regions of sympatry(More)
Periodical cicadas have proven useful in testing a variety of ecological and evolutionary hypotheses because of their unusual life history, extraordinary abundance, and wide geographical range. Periodical cicadas provide the best examples of synchronous periodicity and predator satiation in the animal kingdom, and are excellent illustrations of habitat(More)
Mitochondrial inheritance is generally assumed to be maternal. However, there is increasing evidence of exceptions to this rule, especially in hybrid crosses. In these cases, mitochondria are also inherited paternally, so "paternal leakage" of mitochondria occurs. It is important to understand these exceptions better, since they potentially complicate or(More)
Selection against costly reproductive interactions can lead to reproductive character displacement (RCD). We use information from patterns of displacement and inferences about predisplacement character states to investigate causes of RCD in periodical cicadas. The 13-year periodical cicada Magicicada neotredecim exhibits RCD and strong reproductive(More)
Periodical cicadas are well known for their prime-numbered life cycles (17 and 13 years) and their mass periodical emergences. The origination and persistence of prime-numbered cycles are explained by the hybridization hypothesis on the basis of their lower likelihood of hybridization with other cycles. Recently, we showed by using an integer-based(More)
The evolution of 13- and 17-y periodical cicadas (Magicicada) is enigmatic because at any given location, up to three distinct species groups (Decim, Cassini, Decula) with synchronized life cycles are involved. Each species group is divided into one 13- and one 17-y species with the exception of the Decim group, which contains two 13-y species-13-y species(More)
Periodical cicadas (Magicicada spp.) in the USA are famous for their unique prime-numbered life cycles of 13 and 17 years and their nearly perfectly synchronized mass emergences. Because almost all known species of cicada are non-periodical, periodicity is assumed to be a derived state. A leading hypothesis for the evolution of periodicity in Magicicada(More)
Dated phylogenetic trees are important for studying mechanisms of diversification, and molecular clocks are important tools for studies of organisms lacking good fossil records. However, studies have begun to identify problems in molecular clock dates caused by uncertainty of the modeled molecular substitution process. Here we explore Bayesian relaxed-clock(More)